@article{BanksNishiyamaHasebeetal.2011, author = {Banks, Jo Ann and Nishiyama, Tomoaki and Hasebe, Mitsuyasu and Bowman, John L. and Gribskov, Michael and dePamphilis, Claude and Albert, Victor A. and Aono, Naoki and Aoyama, Tsuyoshi and Ambrose, Barbara A. and Ashton, Neil W. and Axtell, Michael J. and Barker, Elizabeth and Barker, Michael S. and Bennetzen, Jeffrey L. and Bonawitz, Nicholas D. and Chapple, Clint and Cheng, Chaoyang and Correa, Luiz Gustavo Guedes and Dacre, Michael and DeBarry, Jeremy and Dreyer, Ingo and Elias, Marek and Engstrom, Eric M. and Estelle, Mark and Feng, Liang and Finet, Cedric and Floyd, Sandra K. and Frommer, Wolf B. and Fujita, Tomomichi and Gramzow, Lydia and Gutensohn, Michael and Harholt, Jesper and Hattori, Mitsuru and Heyl, Alexander and Hirai, Tadayoshi and Hiwatashi, Yuji and Ishikawa, Masaki and Iwata, Mineko and Karol, Kenneth G. and Koehler, Barbara and Kolukisaoglu, Uener and Kubo, Minoru and Kurata, Tetsuya and Lalonde, Sylvie and Li, Kejie and Li, Ying and Litt, Amy and Lyons, Eric and Manning, Gerard and Maruyama, Takeshi and Michael, Todd P. and Mikami, Koji and Miyazaki, Saori and Morinaga, Shin-ichi and Murata, Takashi and M{\"u}ller-R{\"o}ber, Bernd and Nelson, David R. and Obara, Mari and Oguri, Yasuko and Olmstead, Richard G. and Onodera, Naoko and Petersen, Bent Larsen and Pils, Birgit and Prigge, Michael and Rensing, Stefan A. and Mauricio Riano-Pachon, Diego and Roberts, Alison W. and Sato, Yoshikatsu and Scheller, Henrik Vibe and Schulz, Burkhard and Schulz, Christian and Shakirov, Eugene V. and Shibagaki, Nakako and Shinohara, Naoki and Shippen, Dorothy E. and Sorensen, Iben and Sotooka, Ryo and Sugimoto, Nagisa and Sugita, Mamoru and Sumikawa, Naomi and Tanurdzic, Milos and Theissen, Guenter and Ulvskov, Peter and Wakazuki, Sachiko and Weng, Jing-Ke and Willats, William W. G. T. and Wipf, Daniel and Wolf, Paul G. and Yang, Lixing and Zimmer, Andreas D. and Zhu, Qihui and Mitros, Therese and Hellsten, Uffe and Loque, Dominique and Otillar, Robert and Salamov, Asaf and Schmutz, Jeremy and Shapiro, Harris and Lindquist, Erika and Lucas, Susan and Rokhsar, Daniel and Grigoriev, Igor V.}, title = {The selaginella genome identifies genetic changes associated with the evolution of vascular plants}, series = {Science}, volume = {332}, journal = {Science}, number = {6032}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1203810}, pages = {960 -- 963}, year = {2011}, abstract = {Vascular plants appeared similar to 410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.}, language = {en} } @article{LaiDentonGilesMuellerRoeberetal.2011, author = {Lai, Alvina G. and Denton-Giles, Matthew and M{\"u}ller-R{\"o}ber, Bernd and Schippers, Jos H. M. and Dijkwel, Paul P.}, title = {Positional information resolves structural variations and uncovers an evolutionarily divergent genetic locus in accessions of arabidopsis thaliana}, series = {Genome biology and evolution}, volume = {3}, journal = {Genome biology and evolution}, number = {1-2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1759-6653}, doi = {10.1093/gbe/evr038}, pages = {627 -- 640}, year = {2011}, abstract = {Genome sequencing of closely related individuals has yielded valuable insights that link genome evolution to phenotypic variations. However, advancement in sequencing technology has also led to an escalation in the number of poor quality-drafted genomes assembled based on reference genomes that can have highly divergent or haplotypic regions. The self-fertilizing nature of Arabidopsis thaliana poses an advantage to sequencing projects because its genome is mostly homozygous. To determine the accuracy of an Arabidopsis drafted genome in less conserved regions, we performed a resequencing experiment on a similar to 371-kb genomic interval in the Landsberg erecta (Ler-0) accession. We identified novel structural variations (SVs) between Ler-0 and the reference accession Col-0 using a long-range polymerase chain reaction approach to generate an Illumina data set that has positional information, that is, a data set with reads that map to a known location. Positional information is important for accurate genome assembly and the resolution of SVs particularly in highly duplicated or repetitive regions. Sixty-one regions with misassembly signatures were identified from the Ler-0 draft, suggesting the presence of novel SVs that are not represented in the draft sequence. Sixty of those were resolved by iterative mapping using our data set. Fifteen large indels (> 100 bp) identified from this study were found to be located either within protein-coding regions or upstream regulatory regions, suggesting the formation of novel alleles or altered regulation of existing genes in Ler-0. We propose future genome-sequencing experiments to follow a clone-based approach that incorporates positional information to ultimately reveal haplotype-specific differences between accessions.}, language = {en} } @article{MaitrejeanWudickVoelkeretal.2011, author = {Maitrejean, Marie and Wudick, Michael M. and V{\"o}lker, Camilla and Prinsi, Bhakti and M{\"u}ller-R{\"o}ber, Bernd and Czempinski, Katrin and Pedrazzini, Emanuela and Vitale, Alessandro}, title = {Assembly and sorting of the tonoplast potassium channel AtTPK1 and its turnover by internalization into the Vacuole}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {156}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {4}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.111.177816}, pages = {1783 -- 1796}, year = {2011}, abstract = {The assembly, sorting signals, and turnover of the tonoplast potassium channel AtTPK1 of Arabidopsis (Arabidopsis thaliana) were studied. We used transgenic Arabidopsis expressing a TPK1-green fluorescent protein (GFP) fusion or protoplasts transiently transformed with chimeric constructs based on domain exchange between TPK1 and TPK4, the only TPK family member not located at the tonoplast. The results show that TPK1-GFP is a dimer and that the newly synthesized polypeptides transiently interact with a thus-far unidentified 20-kD polypeptide. A subset of the TPK1-TPK4 chimeras were unable to assemble correctly and these remained located in the endoplasmic reticulum where they interacted with the binding protein chaperone. Therefore, TPK1 must assemble correctly to pass endoplasmic reticulum quality control. Substitution of the cytosolic C terminus of TPK4 with the corresponding domain of TPK1 was sufficient to allow tonoplast delivery, indicating that this domain contains tonoplast sorting information. Pulse-chase labeling indicated that TPK1-GFP has a half-life of at least 24 h. Turnover of the fusion protein involves internalization into the vacuole where the GFP domain is released. This indicates a possible mechanism for the turnover of tonoplast proteins.}, language = {en} } @article{DortaySchmoeckelFettkeetal.2011, author = {Dortay, Hakan and Schm{\"o}ckel, Sandra M. and Fettke, J{\"o}rg and M{\"u}ller-R{\"o}ber, Bernd}, title = {Expression of human c-reactive protein in different systems and its purification from Leishmania tarentolae}, series = {Protein expression and purification}, volume = {78}, journal = {Protein expression and purification}, number = {1}, publisher = {Elsevier}, address = {San Diego}, issn = {1046-5928}, doi = {10.1016/j.pep.2011.03.010}, pages = {55 -- 60}, year = {2011}, abstract = {With its homo-pentameric structure and calcium-dependent specificity for phosphocholine (PCh), human c-reactive protein (CRP) is produced by the liver and secreted in elevated quantities in response to inflammation. CRP is widely accepted as a cardiac marker, e.g. in point-of-care diagnostics, however, its heterologous expression has proven difficult. Here, we demonstrate the expression of CRP in different Escherichia coli strains as well as by in vitro transcription/translation. Although expression in these systems was straightforward, most of the protein that accumulated was insoluble. We therefore expanded our study to include the expression of CRP in two eukaryotic hosts, namely the yeast Kluyveromyces lactis and the protozoon Leishmania tarentolae. Both expression systems are optimized for secretion of recombinant proteins and here allowed successful expression of soluble CRP. We also demonstrate the purification of recombinant CRP from Leishmania growth medium; the purification of protein expressed from K. lactis was not successful. Functional and intact CRP pentamer is known to interact with PCh in Ca(2+)-dependent manner. In this report we verify the binding specificity of recombinant CRP from L tarentolae (2 mu g/mL culture medium) for PCh.}, language = {en} } @article{RohrmannTohgeAlbaetal.2011, author = {Rohrmann, Johannes and Tohge, Takayuki and Alba, Rob and Osorio, Sonia and Caldana, Camila and McQuinn, Ryan and Arvidsson, Samuel Janne and van der Merwe, Margaretha J. and Riano-Pachon, Diego Mauricio and M{\"u}ller-R{\"o}ber, Bernd and Fei, Zhangjun and Nesi, Adriano Nunes and Giovannoni, James J. and Fernie, Alisdair R.}, title = {Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development}, series = {The plant journal}, volume = {68}, journal = {The plant journal}, number = {6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0960-7412}, doi = {10.1111/j.1365-313X.2011.04750.x}, pages = {999 -- 1013}, year = {2011}, abstract = {Maturation of fleshy fruits such as tomato (Solanum lycopersicum) is subject to tight genetic control. Here we describe the development of a quantitative real-time PCR platform that allows accurate quantification of the expression level of approximately 1000 tomato transcription factors. In addition to utilizing this novel approach, we performed cDNA microarray analysis and metabolite profiling of primary and secondary metabolites using GC-MS and LC-MS, respectively. We applied these platforms to pericarp material harvested throughout fruit development, studying both wild-type Solanum lycopersicum cv. Ailsa Craig and the hp1 mutant. This mutant is functionally deficient in the tomato homologue of the negative regulator of the light signal transduction gene DDB1 from Arabidopsis, and is furthermore characterized by dramatically increased pigment and phenolic contents. We choose this particular mutant as it had previously been shown to have dramatic alterations in the content of several important fruit metabolites but relatively little impact on other ripening phenotypes. The combined dataset was mined in order to identify metabolites that were under the control of these transcription factors, and, where possible, the respective transcriptional regulation underlying this control. The results are discussed in terms of both programmed fruit ripening and development and the transcriptional and metabolic shifts that occur in parallel during these processes.}, language = {en} } @article{ArvidssonPerezRodriguezMuellerRoeber2011, author = {Arvidsson, Samuel Janne and Perez-Rodriguez, Paulino and M{\"u}ller-R{\"o}ber, Bernd}, title = {A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects}, series = {New phytologist : international journal of plant science}, volume = {191}, journal = {New phytologist : international journal of plant science}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0028-646X}, doi = {10.1111/j.1469-8137.2011.03756.x}, pages = {895 -- 907}, year = {2011}, abstract = {To gain a deeper understanding of the mechanisms behind biomass accumulation, it is important to study plant growth behavior. Manually phenotyping large sets of plants requires important human resources and expertise and is typically not feasible for detection of weak growth phenotypes. Here, we established an automated growth phenotyping pipeline for Arabidopsis thaliana to aid researchers in comparing growth behaviors of different genotypes. The analysis pipeline includes automated image analysis of two-dimensional digital plant images and evaluation of manually annotated information of growth stages. It employs linear mixed-effects models to quantify genotype effects on total rosette area and relative leaf growth rate (RLGR) and ANOVAs to quantify effects on developmental times. Using the system, a single researcher can phenotype up to 7000 plants d(-1). Technical variance is very low (typically < 2\%). We show quantitative results for the growth-impaired starch-excessmutant sex4-3 and the growth-enhancedmutant grf9. We show that recordings of environmental and developmental variables reduce noise levels in the phenotyping datasets significantly and that careful examination of predictor variables (such as d after sowing or germination) is crucial to avoid exaggerations of recorded phenotypes and thus biased conclusions.}, language = {en} } @article{BalazadehKwasniewskiCaldanaetal.2011, author = {Balazadeh, Salma and Kwasniewski, Miroslaw and Caldana, Camila and Mehrnia, Mohammad and Zanor, Maria Ines and Xue, Gang-Ping and M{\"u}ller-R{\"o}ber, Bernd}, title = {ORS1, an H2O2-Responsive NAC Transcription Factor, Controls Senescence in Arabidopsis thaliana}, series = {Molecular plant}, volume = {4}, journal = {Molecular plant}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1674-2052}, doi = {10.1093/mp/ssq080}, pages = {346 -- 360}, year = {2011}, abstract = {We report here that ORS1, a previously uncharacterized member of the NAC transcription factor family, controls leaf senescence in Arabidopsis thaliana. Overexpression of ORS1 accelerates senescence in transgenic plants, whereas its inhibition delays it. Genes acting downstream of ORS1 were identified by global expression analysis using transgenic plants producing dexamethasone-inducible ORS1-GR fusion protein. Of the 42 up-regulated genes, 30 (similar to 70\%) were previously shown to be up-regulated during age-dependent senescence. We also observed that 32 (similar to 76\%) of the ORS1-dependent genes were induced by long-term (4 d), but not short-term (6 h) salinity stress (150 mM NaCl). Furthermore, expression of 16 and 24 genes, respectively, was induced after 1 and 5 h of treatment with hydrogen peroxide (H2O2), a reactive oxygen species known to accumulate during salinity stress. ORS1 itself was found to be rapidly and strongly induced by H2O2 treatment in both leaves and roots. Using in vitro binding site selection, we determined the preferred binding motif of ORS1 and found it to be present in half of the ORS1-dependent genes. ORS1 is a paralog of ORE1/ANAC092/AtNAC2, a previously reported regulator of leaf senescence. Phylogenetic footprinting revealed evolutionary conservation of the ORS1 and ORE1 promoter sequences in different Brassicaceae species, indicating strong positive selection acting on both genes. We conclude that ORS1, similarly to ORE1, triggers expression of senescence-associated genes through a regulatory network that may involve cross-talk with salt- and H2O2-dependent signaling pathways.}, language = {en} } @article{DortayAkulaWestphaletal.2011, author = {Dortay, Hakan and Akula, Usha Madhuri and Westphal, Christin and Sittig, Marie and M{\"u}ller-R{\"o}ber, Bernd}, title = {High-throughput protein expression using a combination of ligation-independent cloning (LIC) and infrared fluorescent protein (IFP) detection}, series = {PLoS one}, volume = {6}, journal = {PLoS one}, number = {4}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0018900}, pages = {19}, year = {2011}, abstract = {Protein expression in heterologous hosts for functional studies is a cumbersome effort. Here, we report a superior platform for parallel protein expression in vivo and in vitro. The platform combines highly efficient ligation-independent cloning (LIC) with instantaneous detection of expressed proteins through N- or C-terminal fusions to infrared fluorescent protein (IFP). For each open reading frame, only two PCR fragments are generated (with three PCR primers) and inserted by LIC into ten expression vectors suitable for protein expression in microbial hosts, including Escherichia coli, Kluyveromyces lactis, Pichia pastoris, the protozoon Leishmania tarentolae, and an in vitro transcription/translation system. Accumulation of IFP-fusion proteins is detected by infrared imaging of living cells or crude protein extracts directly after SDS-PAGE without additional processing. We successfully employed the LIC-IFP platform for in vivo and in vitro expression of ten plant and fungal proteins, including transcription factors and enzymes. Using the IFP reporter, we additionally established facile methods for the visualisation of protein-protein interactions and the detection of DNA-transcription factor interactions in microtiter and gel-free format. We conclude that IFP represents an excellent reporter for high-throughput protein expression and analysis, which can be easily extended to numerous other expression hosts using the setup reported here.}, language = {en} } @article{ParlitzKunzeMuellerRoeberetal.2011, author = {Parlitz, Steffi and Kunze, Reinhard and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {Regulation of photosynthesis and transcription factor expression by leaf shading and re-illumination in Arabidopsis thaliana leaves}, series = {Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants}, volume = {168}, journal = {Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants}, number = {12}, publisher = {Elsevier}, address = {Jena}, issn = {0176-1617}, doi = {10.1016/j.jplph.2011.02.001}, pages = {1311 -- 1319}, year = {2011}, abstract = {Leaf senescence of annual plants is a genetically programmed developmental phase. The onset of leaf senescence is however not exclusively determined by tissue age but is modulated by various environmental factors. Shading of individual attached leaves evokes dark-induced senescence. The initiation and progression of dark-induced senescence depend on the plant and the age of the affected leaf, however. In several plant species dark-induced senescence is fully reversible upon re-illumination and the leaves can regreen, but the regreening ability depends on the duration of dark incubation. We studied the ability of Arabidopsis thaliana leaves to regreen after dark-incubation with the aim to identify transcription factors (TFs) that are involved in the regulation of early dark-induced senescence and regreening. Two days shading of individual attached leaves triggers the transition into a pre-senescence state from which the leaves can largely recover. Longer periods of darkness result in irreversible senescence. Large scale qRT-PCR analysis of 1872 TF genes revealed that 649 of them are regulated in leaves during normal development, upon shading or re-illumination. Leaf shading triggered upregulation of 150 TF genes, some of which are involved in controlling senescence. Of those, 39 TF genes were upregulated after two days in the dark and regained pre-shading expression level after two days of re-illumination. Furthermore, a larger number of 422 TF genes were down regulated upon shading. In TF gene clusters with different expression patterns certain TF families are over-represented.}, language = {en} } @article{WinckKwasniewskiWienkoopetal.2011, author = {Winck, Flavia Vischi and Kwasniewski, Miroslaw and Wienkoop, Stefanie and M{\"u}ller-R{\"o}ber, Bernd}, title = {An optimized method for the isolation of nuclei from chlamydomas Reinhardtii (Chlorophyceae)}, series = {Journal of phycology}, volume = {47}, journal = {Journal of phycology}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0022-3646}, doi = {10.1111/j.1529-8817.2011.00967.x}, pages = {333 -- 340}, year = {2011}, abstract = {The cell nucleus harbors a large number of proteins involved in transcription, RNA processing, chromatin remodeling, nuclear signaling, and ribosome assembly. The nuclear genome of the model alga Chlamydomonas reinhardtii P. A. Dang. was recently sequenced, and many genes encoding nuclear proteins, including transcription factors and transcription regulators, have been identified through computational discovery tools. However, elucidating the specific biological roles of nuclear proteins will require support from biochemical and proteomics data. Cellular preparations with enriched nuclei are important to assist in such analyses. Here, we describe a simple protocol for the isolation of nuclei from Chlamydomonas, based on a commercially available kit. The modifications done in the original protocol mainly include alterations of the differential centrifugation parameters and detergent-based cell lysis. The nuclei-enriched fractions obtained with the optimized protocol show low contamination with mitochondrial and plastid proteins. The protocol can be concluded within only 3 h, and the proteins extracted can be used for gel-based and non-gel-based proteomic approaches.}, language = {en} }