@article{ZollerHolschneiderBenZion2005, author = {Zoller, Gert and Holschneider, Matthias and Ben-Zion, Yehuda}, title = {The role of heterogeneities as a tuning parameter of earthquake dynamics}, issn = {0033-4553}, year = {2005}, abstract = {We investigate the influence of spatial heterogeneities on various aspects of brittle failure and seismicity in a model of a large strike-slip fault. The model dynamics is governed by realistic boundary conditions consisting of constant velocity motion of regions around the fault, static/kinetic friction laws, creep with depth-dependent coefficients, and 3-D elastic stress transfer. The dynamic rupture is approximated on a continuous time scale using a finite stress propagation velocity ("quasidynamic model''). The model produces a "brittle- ductile'' transition at a depth of about 12.5 km, realistic hypocenter distributions, and other features of seismicity compatible with observations. Previous work suggested that the range of size scales in the distribution of strength-stress heterogeneities acts as a tuning parameter of the dynamics. Here we test this hypothesis by performing a systematic parameter-space study with different forms of heterogeneities. In particular, we analyze spatial heterogeneities that can be tuned by a single parameter in two distributions: ( 1) high stress drop barriers in near- vertical directions and ( 2) spatial heterogeneities with fractal properties and variable fractal dimension. The results indicate that the first form of heterogeneities provides an effective means of tuning the behavior while the second does not. In relatively homogeneous cases, the fault self-organizes to large-scale patches and big events are associated with inward failure of individual patches and sequential failures of different patches. The frequency-size event statistics in such cases are compatible with the characteristic earthquake distribution and large events are quasi-periodic in time. In strongly heterogeneous or near-critical cases, the rupture histories are highly discontinuous and consist of complex migration patterns of slip on the fault. In such cases, the frequency-size and temporal statistics follow approximately power-law relations}, language = {en} } @article{ZollerHainzlHolschneideretal.2005, author = {Zoller, Gert and Hainzl, Sebastian and Holschneider, Matthias and Ben-Zion, Yehuda}, title = {Aftershocks resulting from creeping sections in a heterogeneous fault}, issn = {0094-8276}, year = {2005}, abstract = {We show that realistic aftershock sequences with space-time characteristics compatible with observations are generated by a model consisting of brittle fault segments separated by creeping zones. The dynamics of the brittle regions is governed by static/kinetic friction, 3D elastic stress transfer and small creep deformation. The creeping parts are characterized by high ongoing creep velocities. These regions store stress during earthquake failures and then release it in the interseismic periods. The resulting postseismic deformation leads to aftershock sequences following the modified Omori law. The ratio of creep coefficients in the brittle and creeping sections determines the duration of the postseismic transients and the exponent p of the modified Omori law}, language = {en} } @article{ZollerHolschneiderBenZion2004, author = {Zoller, Gert and Holschneider, Matthias and Ben-Zion, Yehuda}, title = {Quasi-static and quasi-dynamic modeling of earthquake failure at intermediate scales}, year = {2004}, abstract = {We present a model for earthquake failure at intermediate scales (space: 100 m-100 km, time: 100 m/nu(shear}, language = {en} } @article{BaileyBenZionBeckeretal.2010, author = {Bailey, Iain W. and Ben-Zion, Yehuda and Becker, Thorsten W. and Holschneider, Matthias}, title = {Quantifying focal mechanism heterogeneity for fault zones in central and southern California}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2010.04745.x}, year = {2010}, abstract = {P>We present a statistical analysis of focal mechanism orientations for nine California fault zones with the goal of quantifying variations of fault zone heterogeneity at seismogenic depths. The focal mechanism data are generated from first motion polarities for earthquakes in the time period 1983-2004, magnitude range 0-5, and depth range 0-15 km. Only mechanisms with good quality solutions are used. We define fault zones using 20 km wide rectangles and use summations of normalized potency tensors to describe the distribution of double-couple orientations for each fault zone. Focal mechanism heterogeneity is quantified using two measures computed from the tensors that relate to the scatter in orientations and rotational asymmetry or skewness of the distribution. We illustrate the use of these quantities by showing relative differences in the focal mechanism heterogeneity characteristics for different fault zones. These differences are shown to relate to properties of the fault zone surface traces such that increased scatter correlates with fault trace complexity and rotational asymmetry correlates with the dominant fault trace azimuth. These correlations indicate a link between the long-term evolution of a fault zone over many earthquake cycles and its seismic behaviour over a 20 yr time period. Analysis of the partitioning of San Jacinto fault zone focal mechanisms into different faulting styles further indicates that heterogeneity is dominantly controlled by structural properties of the fault zone, rather than time or magnitude related properties of the seismicity.}, language = {en} } @article{ZoellerBenZion2014, author = {Z{\"o}ller, Gert and Ben-Zion, Yehuda}, title = {Large earthquake hazard of the San Jacinto fault zone, CA, from long record of simulated seismicity assimilating the available instrumental and paleoseismic data}, series = {Pure and applied geophysics}, volume = {171}, journal = {Pure and applied geophysics}, number = {11}, publisher = {Springer}, address = {Basel}, issn = {0033-4553}, doi = {10.1007/s00024-014-0783-1}, pages = {2955 -- 2965}, year = {2014}, abstract = {We investigate spatio-temporal properties of earthquake patterns in the San Jacinto fault zone (SJFZ), California, between Cajon Pass and the Superstition Hill Fault, using a long record of simulated seismicity constrained by available seismological and geological data. The model provides an effective realization of a large segmented strike-slip fault zone in a 3D elastic half-space, with heterogeneous distribution of static friction chosen to represent several clear step-overs at the surface. The simulated synthetic catalog reproduces well the basic statistical features of the instrumental seismicity recorded at the SJFZ area since 1981. The model also produces events larger than those included in the short instrumental record, consistent with paleo-earthquakes documented at sites along the SJFZ for the last 1,400 years. The general agreement between the synthetic and observed data allows us to address with the long-simulated seismicity questions related to large earthquakes and expected seismic hazard. The interaction between m a parts per thousand yen 7 events on different sections of the SJFZ is found to be close to random. The hazard associated with m a parts per thousand yen 7 events on the SJFZ increases significantly if the long record of simulated seismicity is taken into account. The model simulations indicate that the recent increased number of observed intermediate SJFZ earthquakes is a robust statistical feature heralding the occurrence of m a parts per thousand yen 7 earthquakes. The hypocenters of the m a parts per thousand yen 5 events in the simulation results move progressively towards the hypocenter of the upcoming m a parts per thousand yen 7 earthquake.}, language = {en} } @article{DresenKwiatekGoebeletal.2020, author = {Dresen, Georg and Kwiatek, Grzegorz and Goebel, Thomas and Ben-Zion, Yehuda}, title = {Seismic and aseismic preparatory processes before large stick-slip failure}, series = {Pure and applied geophysics}, volume = {177}, journal = {Pure and applied geophysics}, number = {12}, publisher = {Springer}, address = {Basel}, issn = {0033-4553}, doi = {10.1007/s00024-020-02605-x}, pages = {5741 -- 5760}, year = {2020}, abstract = {Natural earthquakes often have very few observable foreshocks which significantly complicates tracking potential preparatory processes. To better characterize expected preparatory processes before failures, we study stick-slip events in a series of triaxial compression tests on faulted Westerly granite samples. We focus on the influence of fault roughness on the duration and magnitude of recordable precursors before large stick-slip failure. Rupture preparation in the experiments is detectable over long time scales and involves acoustic emission (AE) and aseismic deformation events. Preparatory fault slip is found to be accelerating during the entire pre-failure loading period, and is accompanied by increasing AE rates punctuated by distinct activity spikes associated with large slip events. Damage evolution across the fault zones and surrounding wall rocks is manifested by precursory decrease of seismic b-values and spatial correlation dimensions. Peaks in spatial event correlation suggest that large slip initiation occurs by failure of multiple asperities. Shear strain estimated from AE data represents only a small fraction (< 1\%) of total shear strain accumulated during the preparation phase, implying that most precursory deformation is aseismic. The relative contribution of aseismic deformation is amplified by larger fault roughness. Similarly, seismic coupling is larger for smooth saw-cut faults compared to rough faults. The laboratory observations point towards a long-lasting and continuous preparation process leading to failure and large seismic events. The strain partitioning between aseismic and observable seismic signatures depends on fault structure and instrument resolution.}, language = {en} }