@article{BarlowGreigBridgesetal.2002, author = {Barlow, S. M. and Greig, J. B. and Bridges, J. W. and Carere, A. and Carpy, A. J. and Galli, Corrado L. and Kleiner, J. and Knudsen, I. and Koeter, H. B. and Levy, L. S. and Madsen, C. and Mayer, S. and Narbonne, J. F. and Pfannkuch, F. and Prodanchuk, M. G. and Smith, Mason R. and Steinberg, Pablo}, title = {Hazard identification by methods of animal-based toxicology}, year = {2002}, language = {en} } @article{SchaffenrothBarlowGeieretal.2019, author = {Schaffenroth, Veronika and Barlow, Brad N. and Geier, Stephan Alfred and Vuckovic, Maja and Kilkenny, D. and Wolz, M. and Kupfer, Thomas and Heber, Ulrich and Drechsel, H. and Kimeswenger, S. and Marsh, T. and Wolf, M. and Pelisoli, Ingrid Domingos and Freudenthal, Joseph and Dreizler, S. and Kreuzer, S. and Ziegerer, E.}, title = {The EREBOS project: Investigating the effect of substellar and low-mass stellar companions on late stellar evolution Survey, target selection, and atmospheric parameters}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {630}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201936019}, pages = {29}, year = {2019}, abstract = {Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations - reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10\% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution.}, language = {en} } @article{RatzloffBarlowKupferetal.2019, author = {Ratzloff, Jeffrey K. and Barlow, Brad N. and Kupfer, Thomas and Corcoran, Kyle A. and Geier, Stephan Alfred and Bauer, Evan and Corbett, Henry T. and Howard, Ward S. and Glazier, Amy and Law, Nicholas M.}, title = {EVR-CB-001: An Evolving, Progenitor, White Dwarf Compact Binary Discovered with the Evryscope}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {883}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab3727}, pages = {12}, year = {2019}, abstract = {We present EVR-CB-001, the discovery of a compact binary with an extremely low-mass (0.21 +/- 0.05M(circle dot)) helium core white dwarf progenitor (pre-He WD) and an unseen low-mass (0.32 +/- 0.06M(circle dot)) helium white dwarf (He WD) companion. He WDs are thought to evolve from the remnant helium-rich core of a main-sequence star stripped during the giant phase by a close companion. Low-mass He WDs are exotic objects (only about 0.2\% of WDs are thought to be less than 0.3 M-circle dot), and are expected to be found in compact binaries. Pre-He WDs are even rarer, and occupy the intermediate phase after the core is stripped, but before the star becomes a fully degenerate WD and with a larger radius (approximate to 0.2R(circle dot)) than a typical WD. The primary component of EVR-CB-001 (the pre-He WD) was originally thought to be a hot subdwarf (sdB) star from its blue color and under-luminous magnitude, characteristic of sdBs. The mass, temperature (T-eff = 18,500 +/- 500 K), and surface gravity (log(g) = 4.96 +/- 0.04) solutions from this work are lower than values for typical hot subdwarfs. The primary is likely to be a post-red-giant branch, pre-He WD contracting into a He WD, and at a stage that places it nearest to sdBs on color-magnitude and T-eff-log(g) diagrams. EVR-CB-001 is expected to evolve into a fully double degenerate, compact system that should spin down and potentially evolve into a single hot subdwarf star. Single hot subdwarfs are observed, but progenitor systems have been elusive.}, language = {en} }