@article{WuAlluGarapatietal.2012, author = {Wu, Anhui and Allu, Annapurna Devi and Garapati, Prashanth and Siddiqui, Hamad and Dortay, Hakan and Zanor, Maria-Ines and Asensi-Fabado, Maria Amparo and Munne-Bosch, Sergi and Antonio, Carla and Tohge, Takayuki and Fernie, Alisdair R. and Kaufmann, Kerstin and Xue, Gang-Ping and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {Jungbrunnen1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in arabidopsis}, series = {The plant cell}, volume = {24}, journal = {The plant cell}, number = {2}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.111.090894}, pages = {482 -- 506}, year = {2012}, abstract = {The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H2O2)-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H2O2 levels, and enhances tolerance to various abiotic stresses, whereas in jub1-1 knockdown plants, precocious senescence and lowered abiotic stress tolerance are observed. A JUB1 binding site containing a RRYGCCGT core sequence is present in the promoter of DREB2A, which plays an important role in abiotic stress responses. JUB1 transactivates DREB2A expression in mesophyll cell protoplasts and transgenic plants and binds directly to the DREB2A promoter. Transcriptome profiling of JUB1 overexpressors revealed elevated expression of several reactive oxygen species-responsive genes, including heat shock protein and glutathione S-transferase genes, whose expression is further induced by H2O2 treatment. Metabolite profiling identified elevated Pro and trehalose levels in JUB1 overexpressors, in accordance with their enhanced abiotic stress tolerance. We suggest that JUB1 constitutes a central regulator of a finely tuned control system that modulates cellular H2O2 level and primes the plants for upcoming stress through a gene regulatory network that involves DREB2A.}, language = {en} } @article{LotkowskaTohgeFernieetal.2015, author = {Lotkowska, Magda E. and Tohge, Takayuki and Fernie, Alisdair R. and Xue, Gang-Ping and Balazadeh, Salma and M{\"u}ller-R{\"o}ber, Bernd}, title = {The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {169}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {3}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.15.00605}, pages = {1862 -- 1880}, year = {2015}, abstract = {MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up-and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C) CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions.}, language = {en} } @article{BalazadehSchildhauerAraujoetal.2014, author = {Balazadeh, Salma and Schildhauer, Joerg and Araujo, Wagner L. and Munne-Bosch, Sergi and Fernie, Alisdair R. and Proost, Sebastian and Humbeck, Klaus and M{\"u}ller-R{\"o}ber, Bernd}, title = {Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences}, series = {Journal of experimental botany}, volume = {65}, journal = {Journal of experimental botany}, number = {14}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/eru119}, pages = {3975 -- 3992}, year = {2014}, abstract = {Leaf senescence is a developmentally controlled process, which is additionally modulated by a number of adverse environmental conditions. Nitrogen shortage is a well-known trigger of precocious senescence in many plant species including crops, generally limiting biomass and seed yield. However, leaf senescence induced by nitrogen starvation may be reversed when nitrogen is resupplied at the onset of senescence. Here, the transcriptomic, hormonal, and global metabolic rearrangements occurring during nitrogen resupply-induced reversal of senescence in Arabidopsis thaliana were analysed. The changes induced by senescence were essentially in keeping with those previously described; however, these could, by and large, be reversed. The data thus indicate that plants undergoing senescence retain the capacity to sense and respond to the availability of nitrogen nutrition. The combined data are discussed in the context of the reversibility of the senescence programme and the evolutionary benefit afforded thereby. Future prospects for understanding and manipulating this process in both Arabidopsis and crop plants are postulated.}, language = {en} } @article{EngqvistSchmitzGertzmannetal.2015, author = {Engqvist, Martin K. M. and Schmitz, Jessica and Gertzmann, Anke and Florian, Alexandra and Jaspert, Nils and Arif, Muhammad and Balazadeh, Salma and M{\"u}ller-R{\"o}ber, Bernd and Fernie, Alisdair R. and Maurino, Veronica G.}, title = {GLYCOLATE OXIDASE3, a Glycolate Oxidase Homolog of Yeast L-Lactate Cytochrome c Oxidoreductase, Supports L-Lactate Oxidation in Roots of Arabidopsis}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {169}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {2}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.15.01003}, pages = {1042 -- 1061}, year = {2015}, abstract = {In roots of Arabidopsis (Arabidopsis thaliana), L-lactate is generated by the reduction of pyruvate via L-lactate dehydrogenase, but this enzyme does not efficiently catalyze the reverse reaction. Here, we identify the Arabidopsis glycolate oxidase (GOX) paralogs GOX1, GOX2, and GOX3 as putative L-lactate-metabolizing enzymes based on their homology to CYB2, the L-lactate cytochrome c oxidoreductase from the yeast Saccharomyces cerevisiae. We found that GOX3 uses L-lactate with a similar efficiency to glycolate; in contrast, the photorespiratory isoforms GOX1 and GOX2, which share similar enzymatic properties, use glycolate with much higher efficiencies than L-lactate. The key factor making GOX3 more efficient with L-lactate than GOX1 and GOX2 is a 5- to 10-fold lower Km for the substrate. Consequently, only GOX3 can efficiently metabolize L-lactate at low intracellular concentrations. Isotope tracer experiments as well as substrate toxicity tests using GOX3 loss-of-function and overexpressor plants indicate that L-lactate is metabolized in vivo by GOX3. Moreover, GOX3 rescues the lethal growth phenotype of a yeast strain lacking CYB2, which cannot grow on L-lactate as a sole carbon source. GOX3 is predominantly present in roots and mature to aging leaves but is largely absent from young photosynthetic leaves, indicating that it plays a role predominantly in heterotrophic rather than autotrophic tissues, at least under standard growth conditions. In roots of plants grown under normoxic conditions, loss of function of GOX3 induces metabolic rearrangements that mirror wild-type responses under hypoxia. Thus, we identified GOX3 as the enzyme that metabolizes L-lactate to pyruvate in vivo and hypothesize that it may ensure the sustainment of low levels of L-lactate after its formation under normoxia.}, language = {en} } @article{TabatabaeiAlseekhShahidetal.2022, author = {Tabatabaei, Iman and Alseekh, Saleh and Shahid, Mohammad and Leniak, Ewa and Wagner, Mateusz and Mahmoudi, Henda and Thushar, Sumitha and Fernie, Alisdair R. and Murphy, Kevin M. and Schm{\"o}ckel, Sandra M. and Tester, Mark and M{\"u}ller-R{\"o}ber, Bernd and Skirycz, Aleksandra and Balazadeh, Salma}, title = {The diversity of quinoa morphological traits and seed metabolic composition}, series = {Scientific data}, volume = {9}, journal = {Scientific data}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2052-4463}, doi = {10.1038/s41597-022-01399-y}, pages = {7}, year = {2022}, abstract = {Quinoa (Chenopodium quinoa Willd.) is an herbaceous annual crop of the amaranth family (Amaranthaceae). It is increasingly cultivated for its nutritious grains, which are rich in protein and essential amino acids, lipids, and minerals. Quinoa exhibits a high tolerance towards various abiotic stresses including drought and salinity, which supports its agricultural cultivation under climate change conditions. The use of quinoa grains is compromised by anti-nutritional saponins, a terpenoid class of secondary metabolites deposited in the seed coat; their removal before consumption requires extensive washing, an economically and environmentally unfavorable process; or their accumulation can be reduced through breeding. In this study, we analyzed the seed metabolomes, including amino acids, fatty acids, and saponins, from 471 quinoa cultivars, including two related species, by liquid chromatography - mass spectrometry. Additionally, we determined a large number of agronomic traits including biomass, flowering time, and seed yield. The results revealed considerable diversity between genotypes and provide a knowledge base for future breeding or genome editing of quinoa.}, language = {en} } @article{ThirumalaikumarGorkaSchulzetal.2020, author = {Thirumalaikumar, Venkatesh P. and Gorka, Michal and Schulz, Karina and Masclaux-Daubresse, Celine and Sampathkumar, Arun and Skirycz, Aleksandra and Vierstra, Richard D. and Balazadeh, Salma}, title = {Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1}, series = {Autophagy}, volume = {17}, journal = {Autophagy}, number = {9}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {1554-8635}, doi = {10.1080/15548627.2020.1820778}, pages = {2184 -- 2199}, year = {2020}, abstract = {In nature, plants are constantly exposed to many transient, but recurring, stresses. Thus, to complete their life cycles, plants require a dynamic balance between capacities to recover following cessation of stress and maintenance of stress memory. Recently, we uncovered a new functional role for macroautophagy/autophagy in regulating recovery from heat stress (HS) and resetting cellular memory of HS inArabidopsis thaliana. Here, we demonstrated that NBR1 (next to BRCA1 gene 1) plays a crucial role as a receptor for selective autophagy during recovery from HS. Immunoblot analysis and confocal microscopy revealed that levels of the NBR1 protein, NBR1-labeled puncta, and NBR1 activity are all higher during the HS recovery phase than before. Co-immunoprecipitation analysis of proteins interacting with NBR1 and comparative proteomic analysis of annbr1-null mutant and wild-type plants identified 58 proteins as potential novel targets of NBR1. Cellular, biochemical and functional genetic studies confirmed that NBR1 interacts with HSP90.1 (heat shock protein 90.1) and ROF1 (rotamase FKBP 1), a member of the FKBP family, and mediates their degradation by autophagy, which represses the response to HS by attenuating the expression ofHSPgenes regulated by the HSFA2 transcription factor. Accordingly, loss-of-function mutation ofNBR1resulted in a stronger HS memory phenotype. Together, our results provide new insights into the mechanistic principles by which autophagy regulates plant response to recurrent HS.}, language = {en} }