@article{BorkDarchowSchatzetal.1997, author = {Bork, Hans-Rudolf and Darchow, Claus and Schatz, Thomas and Freilinghaus, Monika and H{\"o}hn, Axel and Schmidt, R.}, title = {The Soil and Sediment Profile B{\"a}ckerweg in the Natural Reserve "M{\"a}rkische Schweiz", east-Brandenburg, Germany}, year = {1997}, language = {en} } @book{HooftHolsteinMakrietal.2001, author = {Hooft, Gerard and Holstein, Barry and Makri, Nancy and Duru, Ismail and Ruffini, Remo and Janke, Wolfhard and Pelster, Axel and Schmidt, Hans-J{\"u}rgen and Bachmann, Michael}, title = {Fluctuating paths and fields : festschrift dedicated to Hagen Kleinert on the occasion of his 60the birthday}, publisher = {World Scientific}, address = {River Edge, NJ}, isbn = {981-02-4648-X}, pages = {871 S.}, year = {2001}, language = {en} } @article{WillnerGerdesMassonneetal.2011, author = {Willner, Arne P. and Gerdes, Axel and Massonne, Hans-Joachim and Schmidt, Alexander and Sudo, Masafumi and Thomson, Stuart N. and Vujovich, Graciela}, title = {The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure-temperature-time evolution within part of a collisional belt (Guarguaraz Complex, W-Argentina)}, series = {Contributions to mineralogy and petrology}, volume = {162}, journal = {Contributions to mineralogy and petrology}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0010-7999}, doi = {10.1007/s00410-010-0598-8}, pages = {303 -- 327}, year = {2011}, abstract = {The Guarguaraz Complex in West Argentina formed during collision between the microplate Chilenia and South America. It is composed of neritic clastic metasediments with intercalations of metabasic and ultrabasic rocks of oceanic origin. Prograde garnet growth in metapelite and metabasite occurred between 1.2 GPa, 470 degrees C and 1.4 GPa, 530 degrees C, when the penetrative s(2)-foliation was formed. The average age of garnet crystallization of 390 +/- 2 Ma (2 sigma) was determined from three four-point Lu-Hf mineral isochrones from metapelite and metabasite samples and represents the time of collision. Peak pressure conditions are followed by a decompression path with slight heating at 0.5 GPa, 560 degrees C. Fluid release during decompression caused equilibration of mineral compositions at the rims and also aided Ar diffusion. An Ar-40/39 Ar plateau age of white mica at 353 +/- 1 Ma (1 sigma) indicates the time of cooling below 350-400 degrees C. These temperatures were attained at pressures of 0.2-0.3 GPa, indicative of an average exhumation rate of >= 1 mm/a for the period 390-353 Ma. Late hydrous influx at 0.1-0.3 GPa caused pervasive growth of sericite and chlorite and reset the Ar/Ar ages of earlier coarse-grained white mica. At 284-295 Ma, the entire basement cooled below 280 degrees C (fission track ages of zircon) after abundant post-collisional granitoid intrusion. The deeply buried epicontinental sedimentary rocks, the high peak pressure referring to a low metamorphic geotherm of 10-12 degrees C/km, and the decompression/heating path are characteristics of material buried and exhumed within a (micro) continent-continent collisional setting.}, language = {en} } @article{DeBiaseRegerSchmidtetal.2011, author = {De Biase, Cecilia and Reger, Daniel and Schmidt, Axel and Jechalke, Sven and Reiche, Nils and Martinez-Lavanchy, Paula M. and Rosell, Monica and Van Afferden, Manfred and Maier, Uli and Oswald, Sascha and Thullner, Martin}, title = {Treatment of volatile organic contaminants in a vertical flow filter - relevance of different removal processes}, series = {Ecological engineering : the journal of ecotechnology}, volume = {37}, journal = {Ecological engineering : the journal of ecotechnology}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-8574}, doi = {10.1016/j.ecoleng.2011.03.023}, pages = {1292 -- 1303}, year = {2011}, abstract = {Vertical flow filters and vertical flow constructed wetlands are established wastewater treatment systems and have also been proposed for the treatment of contaminated groundwater. This study investigates the removal processes of volatile organic compounds in a pilot-scale vertical flow filter. The filter is intermittently irrigated with contaminated groundwater containing benzene, MTBE and ammonium as the main contaminants. The system is characterized by unsaturated conditions and high contaminant removal efficiency. The aim of the present study is to evaluate the contribution of biodegradation and volatilization to the overall removal of benzene and MTBE. Tracer tests and flow rate measurements showed a highly transient flow and heterogeneous transport regime. Radon-222, naturally occurring in the treated groundwater, was used as a gas tracer and indicated a high volatilization potential. Radon-222 behavior was reproduced by numerical simulations and extrapolated for benzene and MTBE, and indicated these compounds also have a high volatilization potential. In contrast, passive sampler measurements on top of the filter detected only low benzene and MTBE concentrations. Biodegradation potential was evaluated by the analysis of catabolic genes involved in organic compound degradation and a quantitative estimation of biodegradation was derived from stable isotope fractionation analysis. Results suggest that despite the high volatilization potential, biodegradation is the predominant mass removal process in the filter system, which indicates that the volatilized fraction of the contaminants is still subject to subsequent biodegradation. In particular, the upper filter layer located between the injection tubes and the surface of the system might also contribute to biodegradation, and might play a crucial role in avoiding the emission of volatilized contaminants into the atmosphere.}, language = {en} } @article{SchmidtFranckeGrosseetal.2023, author = {Schmidt, Lena Katharina and Francke, Till and Grosse, Peter Martin and Mayer, Christoph and Bronstert, Axel}, title = {Reconstructing five decades of sediment export from two glacierized high-alpine catchments in Tyrol, Austria, using nonparametric regression}, series = {Hydrology and earth system sciences : HESS}, volume = {27}, journal = {Hydrology and earth system sciences : HESS}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-27-1841-2023}, pages = {1841 -- 1863}, year = {2023}, abstract = {Knowledge on the response of sediment export to recent climate change in glacierized areas in the European Alps is limited, primarily because long-term records of suspended sediment concentrations (SSCs) are scarce. Here we tested the estimation of sediment export of the past five decades using quantile regression forest (QRF), a nonparametric, multivariate regression based on random forest. The regression builds on short-term records of SSCs and long records of the most important hydroclimatic drivers (discharge, precipitation and air temperature - QPT). We trained independent models for two nested and partially glacier-covered catchments, Vent (98 km(2)) and Vernagt (11.4 km(2)), in the upper otztal in Tyrol, Austria (1891 to 3772 m a.s.l.), where available QPT records start in 1967 and 1975. To assess temporal extrapolation ability, we used two 2-year SSC datasets at gauge Vernagt, which are almost 20 years apart, for a validation. For Vent, we performed a five-fold cross-validation on the 15 years of SSC measurements. Further, we quantified the number of days where predictors exceeded the range represented in the training dataset, as the inability to extrapolate beyond this range is a known limitation of QRF. Finally, we compared QRF performance to sediment rating curves (SRCs). We analyzed the modeled sediment export time series, the predictors and glacier mass balance data for trends (Mann-Kendall test and Sen's slope estimator) and step-like changes (using the widely applied Pettitt test and a complementary Bayesian approach).Our validation at gauge Vernagt demonstrated that QRF performs well in estimating past daily sediment export (Nash-Sutcliffe efficiency (NSE) of 0.73) and satisfactorily for SSCs (NSE of 0.51), despite the small training dataset. The temporal extrapolation ability of QRF was superior to SRCs, especially in periods with high-SSC events, which demonstrated the ability of QRF to model threshold effects. Days with high SSCs tended to be underestimated, but the effect on annual yields was small. Days with predictor exceedances were rare, indicating a good representativity of the training dataset. Finally, the QRF reconstruction models outperformed SRCs by about 20 percent points of the explained variance.Significant positive trends in the reconstructed annual suspended sediment yields were found at both gauges, with distinct step-like increases around 1981. This was linked to increased glacier melt, which became apparent through step-like increases in discharge at both gauges as well as change points in mass balances of the two largest glaciers in the Vent catchment. We identified exceptionally high July temperatures in 1982 and 1983 as a likely cause. In contrast, we did not find coinciding change points in precipitation. Opposing trends at the two gauges after 1981 suggest different timings of "peak sediment". We conclude that, given large-enough training datasets, the presented QRF approach is a promising tool with the ability to deepen our understanding of the response of high-alpine areas to decadal climate change.}, language = {en} } @article{SchmidtFranckeRottleretal.2022, author = {Schmidt, Lena Katharina and Francke, Till and Rottler, Erwin and Blume, Theresa and Sch{\"o}ber, Johannes and Bronstert, Axel}, title = {Suspended sediment and discharge dynamics in a glaciated alpine environment}, series = {Earth surface dynamics}, volume = {10}, journal = {Earth surface dynamics}, number = {3}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {2196-632X}, doi = {10.5194/esurf-10-653-2022}, pages = {653 -- 669}, year = {2022}, abstract = {Glaciated high-alpine areas are fundamentally altered by climate change, with well-known implications for hydrology, e.g., due to glacier retreat, longer snow-free periods, and more frequent and intense summer rainstorms. While knowledge on how these hydrological changes will propagate to suspended sediment dynamics is still scarce, it is needed to inform mitigation and adaptation strategies. To understand the processes and source areas most relevant to sediment dynamics, we analyzed discharge and sediment dynamics in high temporal resolution as well as their patterns on several spatial scales, which to date few studies have done. We used a nested catchment setup in the Upper {\"O}tztal in Tyrol, Austria, where high-resolution (15 min) time series of discharge and suspended sediment concentrations are available for up to 15 years (2006-2020). The catchments of the gauges in Vent, S{\"o}lden and Tumpen range from 100 to almost 800 km2 with 10 \% to 30 \% glacier cover and span an elevation range of 930 to 3772 m a.s.l. We analyzed discharge and suspended sediment yields (SSY), their distribution in space, their seasonality and spatial differences therein, and the relative importance of short-term events. We complemented our analysis by linking the observations to satellite-based snow cover maps, glacier inventories, mass balances and precipitation data. Our results indicate that the areas above 2500 m a.s.l., characterized by glacier tongues and the most recently deglaciated areas, are crucial for sediment generation in all sub-catchments. This notion is supported by the synchronous spring onset of sediment export at the three gauges, which coincides with snowmelt above 2500 m but lags behind spring discharge onsets. This points at a limitation of suspended sediment supply as long as the areas above 2500 m are snow-covered. The positive correlation of annual SSY with glacier cover (among catchments) and glacier mass balances (within a catchment) further supports the importance of the glacier-dominated areas. The analysis of short-term events showed that summer precipitation events were associated with peak sediment concentrations and yields but on average accounted for only 21 \% of the annual SSY in the headwaters. These results indicate that under current conditions, thermally induced sediment export (through snow and glacier melt) is dominant in the study area. Our results extend the scientific knowledge on current hydro-sedimentological conditions in glaciated high-alpine areas and provide a baseline for studies on projected future changes in hydro-sedimentological system dynamics.}, language = {en} }