@article{DambacherDimigenBraunetal.2012, author = {Dambacher, Michael and Dimigen, Olaf and Braun, Mario and Wille, Kristin and Jacobs, Arthur M. and Kliegl, Reinhold}, title = {Stimulus onset asynchrony and the timeline of word recognition: Event-related potentials during sentence reading}, series = {Neuropsychologia : an international journal in behavioural and cognitive neuroscience}, volume = {50}, journal = {Neuropsychologia : an international journal in behavioural and cognitive neuroscience}, number = {8}, publisher = {Elsevier}, address = {Oxford}, issn = {0028-3932}, doi = {10.1016/j.neuropsychologia.2012.04.011}, pages = {1852 -- 1870}, year = {2012}, abstract = {Three ERP experiments examined the effect of word presentation rate (i.e., stimulus onset asynchrony, SOA) on the time course of word frequency and predictability effects in sentence reading. In Experiments 1 and 2, sentences were presented word-by-word in the screen center at an SOA of 700 and 490 ms, respectively. While these rates are typical for psycholinguistic ERP research, natural reading happens at a considerably faster pace. Accordingly. Experiment 3 employed a near-normal SOA of 280 ms, which approximated the rate of normal reading. Main results can be summarized as follows: (1) The onset latency of early frequency effects decreases gradually with increasing presentation rates. (2) An early interaction between top-down and bottom-up processing is observed only under a near-normal SOA. (3) N400 predictability effects occur later and are smaller at a near-normal (i.e., high) presentation rate than at the lower rates commonly used in ERP experiments. (4) ERP morphology is different at the shortest compared to longer SOAs. Together, the results point to a special role of a near-normal presentation rate for visual word recognition and therefore suggest that SOA should be taken into account in research of natural reading.}, language = {en} } @article{KlieglDambacherDimigenetal.2012, author = {Kliegl, Reinhold and Dambacher, Michael and Dimigen, Olaf and Jacobs, Arthur M. and Sommer, Werner}, title = {Eye movements and brain electric potentials during reading}, series = {Psychological research : an international journal of perception, attention, memory, and action}, volume = {76}, journal = {Psychological research : an international journal of perception, attention, memory, and action}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-0727}, doi = {10.1007/s00426-011-0376-x}, pages = {145 -- 158}, year = {2012}, abstract = {The development of theories and computational models of reading requires an understanding of processing constraints, in particular of timelines related to word recognition and oculomotor control. Timelines of word recognition are usually determined with event-related potentials (ERPs) recorded under conditions of serial visual presentation (SVP) of words; timelines of oculomotor control are derived from parameters of eye movements (EMs) during natural reading. We describe two strategies to integrate these approaches. One is to collect ERPs and EMs in separate SVP and natural reading experiments for the same experimental material (but different subjects). The other strategy is to co-register EMs and ERPs during natural reading from the same subjects. Both strategies yield data that allow us to determine how lexical properties influence ERPs (e.g., the N400 component) and EMs (e.g., fixation durations) across neighboring words. We review our recent research on the effects of frequency and predictability of words on both EM and ERP measures with reference to current models of eye-movement control during reading. Results are in support of the proposition that lexical access is distributed across several fixations and across brain-electric potentials measured on neighboring words.}, language = {en} }