@article{RenStuderSernoetal.2015, author = {Ren, Haojia and Studer, Anja S. and Serno, Sascha and Sigman, Daniel M. and Winckler, Gisela and Anderson, Robert F. and Oleynik, Sergey and Gersonde, Rainer and Haug, Gerald H.}, title = {Glacial-to-interglacial changes in nitrate supply and consumption in the subarctic North Pacific from microfossil-bound N isotopes at two trophic levels}, series = {Paleoceanography}, volume = {30}, journal = {Paleoceanography}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0883-8305}, doi = {10.1002/2014PA002765}, pages = {1217 -- 1232}, year = {2015}, abstract = {Reduced nitrate supply to the subarctic North Pacific (SNP) surface during the last ice age has been inferred from coupled changes in diatom-bound delta N-15 (DB-delta N-15), bulk sedimentary delta N-15, and biogenic fluxes. However, the reliability of bulk sedimentary and DB-delta N-15 has been questioned, and a previously reported delta N-15 minimum during Heinrich Stadial 1 (HS1) has proven difficult to explain. In a core from the western SNP, we report the foraminifera-bound delta N-15 (FB-delta N-15) in Neogloboquadrina pachyderma and Globigerina bulloides, comparing them with DB-delta N-15 in the same core over the past 25 kyr. The delta N-15 of all recorders is higher during the Last Glacial Maximum (LGM) than in the Holocene, indicating more complete nitrate consumption. N. pachyderma FB-delta N-15 is similar to DB-delta N-15 in the Holocene but 2.2\% higher during the LGM. This difference suggests a greater sensitivity of FB-delta(15)NZ to changes in summertime nitrate drawdown and delta N-15 rise, consistent with a lag of the foraminifera relative to diatoms in reaching their summertime production peak in this highly seasonal environment. Unlike DB-delta N-15, FB-delta N-15 does not decrease from the LGM into HS1, which supports a previous suggestion that the HS1 DB-delta N-15 minimum is due to contamination by sponge spicules. FB-delta N-15 drops in the latter half of the Bolling/Allerod warm period and rises briefly in the Younger Dryas cold period, followed by a decline into the mid-Holocene. The FB-delta N-15 records suggest that the coupling among cold climate, reduced nitrate supply, and more complete nitrate consumption that characterized the LGM also applied to the deglacial cold events.}, language = {en} } @article{StuderMartinezGarciaJaccardetal.2012, author = {Studer, Anja S. and Martinez-Garcia, Alfredo and Jaccard, Samuel L. and Girault, France E. and Sigman, Daniel M. and Haug, Gerald H.}, title = {Enhanced stratification and seasonality in the Subarctic Pacific upon Northern Hemisphere Glaciation-New evidence from diatom-bound nitrogen isotopes, alkenones and archaeal tetraethers}, series = {Earth \& planetary science letters}, volume = {351}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.07.029}, pages = {84 -- 94}, year = {2012}, abstract = {Coincident with the intensification of Northern Hemisphere Glaciation (WIG) around 2.73 million years (Ma) ago, sediment cores from both the open subarctic North Pacific and the Antarctic indicate a rapid decline in diatom opal accumulation flux to the seabed, representing one of the most abrupt and dramatic changes in the marine sediment record associated with the development of Pleistocene glacial cycles. In the North Pacific, bulk sediment nitrogen isotope data and alkenone-derived sea surface temperature (SST) estimates suggest that the productivity decline was driven by reduced exchange between surface and deep water, due to weaker wind-driven upwelling and/or a strengthening of the halocline (i.e. "stratification"). In this study of the 2.73 Ma transition at Ocean Drilling Program (ODP) Site 882 in the western subarctic North Pacific, diatom-bound nitrogen isotopes (delta N-15(db)), alkenone mass accumulation rate, and alkenone- and archaeal tetraether-based SST reconstructions support the stratification hypothesis, indicating perennially lower export production, generally higher nitrate consumption, and greater inter-seasonal variation in SST after the 2.73 Ma transition. In addition, the delta N-15(db) of large and small size fractions of Coscinodiscus spp. suggest that these diatoms grew mostly during the spring bloom during the late Pliocene, switching to their current fall-to-winter growth period at the 2.73 Ma transition; this view is consistent with their decline in dominance and provides further evidence for increased stratification (reduced vertical exchange) in the North Pacific after 2.73 Ma. The delta N-15(db) data indicate that, over the similar to 100 kyr period after the 2.73 Ma transition studied here, nitrate consumption did not reach late Pleistocene ice age levels and that nitrate consumption in post-2.73 Ma warm stages was similar to that before the transition, even though productivity was greatly reduced. We tentatively attribute this to relatively weak dust-borne iron inputs in the early post-2.73 Ma period.}, language = {en} }