@article{BallatoStockliGhassemietal.2013, author = {Ballato, Paolo and Stockli, Daniel F. and Ghassemi, Mohammad R. and Landgraf, Angela and Strecker, Manfred and Hassanzadeh, Jamshid and Friedrich, Anke M. and Tabatabaei, Saeid H.}, title = {Accommodation of transpressional strain in the Arabia-Eurasia collision zone new constraints from (U-Th)/He thermochronology in the Alborz mountains, north Iran}, series = {Tectonics}, volume = {32}, journal = {Tectonics}, number = {1}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2012TC003159}, pages = {1 -- 18}, year = {2013}, abstract = {The Alborz range of N Iran provides key information on the spatiotemporal evolution and characteristics of the Arabia-Eurasia continental collision zone. The southwestern Alborz range constitutes a transpressional duplex, which accommodates oblique shortening between Central Iran and the South Caspian Basin. The duplex comprises NW-striking frontal ramps that are kinematically linked to inherited E-W-striking, right-stepping lateral to obliquely oriented ramps. New zircon and apatite (U-Th)/He data provide a high-resolution framework to unravel the evolution of collisional tectonics in this region. Our data record two pulses of fast cooling associated with SW-directed thrusting across the frontal ramps at similar to 18-14 and 9.5-7.5 Ma, resulting in the tectonic repetition of a fossil zircon partial retention zone and a cooling pattern with a half U-shaped geometry. Uniform cooling ages of similar to 7-6 Ma along the southernmost E-W striking oblique ramp and across its associated NW-striking frontal ramps suggests that the ramp was reactivated as a master throughgoing, N-dipping thrust. We interpret this major change in fault kinematics and deformation style to be related to a change in the shortening direction from NE to N/NNE. The reduction in the obliquity of thrusting may indicate the termination of strike-slip faulting (and possibly thrusting) across the Iranian Plateau, which could have been triggered by an increase in elevation. Furthermore, we suggest that similar to 7-6-m.y.-old S-directed thrusting predated inception of the westward motion of the South Caspian Basin. Citation: Ballato, P., D. F. Stockli, M. R. Ghassemi, A. Landgraf, M. R. Strecker, J. Hassanzadeh, A. Friedrich, and S. H. Tabatabaei (2012), Accommodation of transpressional strain in the Arabia-Eurasia collision zone: new constraints from (U-Th)/He thermochronology in the Alborz mountains.}, language = {en} } @article{PatyniakLandgrafDzhumabaevaetal.2017, author = {Patyniak, Magda and Landgraf, Angela and Dzhumabaeva, Atyrgul and Abdrakhmatov, Kanatbek E. and Rosenwinkel, Swenja and Korup, Oliver and Preusser, Frank and Fohlmeister, Jens Bernd and Arrowsmith, J. Ramon and Strecker, Manfred}, title = {Paleoseismic Record of Three Holocene Earthquakes Rupturing the Issyk-Ata Fault near Bishkek, North Kyrgyzstan}, series = {Bulletin of the Seismological Society of America}, volume = {107}, journal = {Bulletin of the Seismological Society of America}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120170083}, pages = {2721 -- 2737}, year = {2017}, abstract = {The northern edge of the western central Tien Shan range is bounded by the Issyk-Ata fault situated south of Bishkek, the capital of Kyrgyzstan. Contraction in this thick-skinned orogen occurs with low-strain accumulation and long earthquake recurrence intervals. In the nineteenth to twentieth centuries, a sequence of large earthquakes with magnitudes between 6.9 and 8 affected the northern Tien Shan but left nearly the entire extent of the Issyk-Ata fault unruptured. Here, the only known historic earthquake ruptured in A.D. 1885 (M6.9) along the western end of the Issyk-Ata fault. Because earthquakes in low-strain regions often tend to cluster in time and may promote failure along nearby structures, the earthquake history of the northern Tien Shan represents an exceptional structural setting for studying fault behavior affected by an intraplate earthquake sequence. We present a paleoseismological study from one site (Belek) along the Issyk-Ata fault located east of the A.D. 1885 epicentral area. Our analysis combines a range of tools, including photogrammetry, differential Global Positioning System, 3D visualization, and age modeling with different dating methods (infrared stimulated luminescence, radiocarbon, U-series) to improve the reliability of an event chronology for the trench stratigraphy and fault geometry. We were able to distinguish three different surfacerupturing paleoearthquakes; these affected the area before 10.5 +/- 1.1 cal ka B.P., at similar to 5.6 +/- 1.0 cal ka B.P., and at similar to 630 +/- 100 cal B.P., respectively. Associated paleomagnitudes for the last two earthquakes range between M6.7 and 7.4, with a cumulative slip rate of 0.7 +/- 0.32 mm/yr. We did not find evidence for the A.D. 1885 event at Belek. Our study yielded two main overall results: first, it extends the regional historic and paleoseismic record; second, the documented rupture events along the Issyk-Ata fault suggest that this fault was not affected in its entirety; instead, these events indicate segmented rupture behavior.}, language = {en} } @article{LandgrafDzhumabaevaAbdrakhmatovetal.2016, author = {Landgraf, Angela and Dzhumabaeva, A. and Abdrakhmatov, Kanatbek E. and Strecker, Manfred and Macaulay, E. A. and Arrowsmith, J. Ram{\´o}n and Sudhaus, Henriette and Preusser, F. and Rugel, Georg and Merchel, Silke}, title = {Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: The northern Tien Shan, Kyrgyzstan}, series = {Journal of geophysical research : Solid earth}, volume = {121}, journal = {Journal of geophysical research : Solid earth}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2015JB012714}, pages = {3888 -- 3910}, year = {2016}, abstract = {The northern Tien Shan of Kyrgyzstan and Kazakhstan has been affected by a series of major earthquakes in the late 19th and early 20th centuries. To assess the significance of such a pulse of strain release in a continental interior, it is important to analyze and quantify strain release over multiple time scales. We have undertaken paleoseismological investigations at two geomorphically distinct sites (Panfilovkoe and Rot Front) near the Kyrgyz capital Bishkek. Although located near the historic epicenters, both sites were not affected by these earthquakes. Trenching was accompanied by dating stratigraphy and offset surfaces using luminescence, radiocarbon, and Be-10 terrestrial cosmogenic nuclide methods. At Rot Front, trenching of a small scarp did not reveal evidence for surface rupture during the last 5000 years. The scarp rather resembles an extensive debris-flow lobe. At Panfilovkoe, we estimate a Late Pleistocene minimum slip rate of 0.2 +/- 0.1 mm/a, averaged over at least two, probably three earthquake cycles. Dip-slip reverse motion along segmented, moderately steep faults resulted in hanging wall collapse scarps during different events. The most recent earthquake occurred around 3.6 +/- 1.3 kyr ago (1 sigma), with dip-slip offsets between 1.2 and 1.4 m. We calculate a probabilistic paleomagnitude to be between 6.7 and 7.2, which is in agreement with regional data from the Kyrgyz range. The morphotectonic signals in the northern Tien Shan are a prime example of deformation in a tectonically active intracontinental mountain belt and as such can help understand the longer-term coevolution of topography and seismogenic processes in similar structural settings worldwide.}, language = {en} } @article{ArnousZeckraVenerdinietal.2020, author = {Arnous, Ahmad and Zeckra, Martin and Venerdini, Agostina and Alvarado, Patricia and Arrowsmith, Ram{\´o}n and Guillemoteau, Julien and Landgraf, Angela and Guti{\´e}rrez, Adolfo Antonio and Strecker, Manfred}, title = {Neotectonic Activity in the Low-Strain Broken Foreland (Santa B{\´a}rbara System) of the North-Western Argentinean Andes (26°S)}, series = {Lithosphere}, volume = {2020}, journal = {Lithosphere}, number = {1}, publisher = {GSA}, address = {Boulder, Colo.}, issn = {1947-4253}, doi = {10.2113/2020/8888588}, pages = {1 -- 25}, year = {2020}, abstract = {Uplift in the broken Andean foreland of the Argentine Santa B{\´a}rbara System (SBS) is associated with the contractional reactivation of basement anisotropies, similar to those reported from the thick-skinned Cretaceous-Eocene Laramide province of North America. Fault scarps, deformed Quaternary deposits and landforms, disrupted drainage patterns, and medium-sized earthquakes within the SBS suggest that movement along these structures may be a recurring phenomenon, with yet to be defined repeat intervals and rupture lengths. In contrast to the Subandes thrust belt farther north, where eastward-migrating deformation has generated a well-defined thrust front, the SBS records spatiotemporally disparate deformation along structures that are only known to the first order. We present herein the results of geomorphic desktop analyses, structural field observations, and 2D electrical resistivity tomography and seismic-refraction tomography surveys and an interpretation of seismic reflection profiles across suspected fault scarps in the sedimentary basins adjacent to the Candelaria Range (CR) basement uplift, in the south-central part of the SBS. Our analysis in the CR piedmont areas reveals consistency between the results of near-surface electrical resistivity and seismic-refraction tomography surveys, the locations of prominent fault scarps, and structural geometries at greater depth imaged by seismic reflection data. We suggest that this deformation is driven by deep-seated blind thrusting beneath the CR and associated regional warping, while shortening involving Mesozoic and Cenozoic sedimentary strata in the adjacent basins was accommodated by layer-parallel folding and flexural-slip faults that cut through Quaternary landforms and deposits at the surface.}, language = {en} } @misc{ArnousZeckraVenerdinietal.2020, author = {Arnous, Ahmad and Zeckra, Martin and Venerdini, Agostina and Alvarado, Patricia and Arrowsmith, Ram{\´o}n and Guillemoteau, Julien and Landgraf, Angela and Guti{\´e}rrez, Adolfo Antonio and Strecker, Manfred}, title = {Neotectonic Activity in the Low-Strain Broken Foreland (Santa B{\´a}rbara System) of the North-Western Argentinean Andes (26°S)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1008}, issn = {1866-8372}, doi = {10.25932/publishup-48018}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480183}, pages = {1 -- 25}, year = {2020}, abstract = {Uplift in the broken Andean foreland of the Argentine Santa B{\´a}rbara System (SBS) is associated with the contractional reactivation of basement anisotropies, similar to those reported from the thick-skinned Cretaceous-Eocene Laramide province of North America. Fault scarps, deformed Quaternary deposits and landforms, disrupted drainage patterns, and medium-sized earthquakes within the SBS suggest that movement along these structures may be a recurring phenomenon, with yet to be defined repeat intervals and rupture lengths. In contrast to the Subandes thrust belt farther north, where eastward-migrating deformation has generated a well-defined thrust front, the SBS records spatiotemporally disparate deformation along structures that are only known to the first order. We present herein the results of geomorphic desktop analyses, structural field observations, and 2D electrical resistivity tomography and seismic-refraction tomography surveys and an interpretation of seismic reflection profiles across suspected fault scarps in the sedimentary basins adjacent to the Candelaria Range (CR) basement uplift, in the south-central part of the SBS. Our analysis in the CR piedmont areas reveals consistency between the results of near-surface electrical resistivity and seismic-refraction tomography surveys, the locations of prominent fault scarps, and structural geometries at greater depth imaged by seismic reflection data. We suggest that this deformation is driven by deep-seated blind thrusting beneath the CR and associated regional warping, while shortening involving Mesozoic and Cenozoic sedimentary strata in the adjacent basins was accommodated by layer-parallel folding and flexural-slip faults that cut through Quaternary landforms and deposits at the surface.}, language = {en} }