@article{BoechatWeithoffKruegeretal.2007, author = {Bo{\"e}chat, Iola G. and Weithoff, Guntram and Kr{\"u}ger, Angela and G{\"u}cker, Bj{\"o}rn and Adrian, Rita}, title = {A biochemical explanation for the success of the mixotrophy in the flagellate Ochromonas sp.}, issn = {0024-3590}, doi = {10.4319/lo.2007.52.4.1624}, year = {2007}, abstract = {We report the influence of different nutritional modes-autotrophy, mixotrophy, and heterotrophy-on the fatty acid and sterol composition of the freshwater flagellate Ochromonas sp. and discuss the ecological significance of our results with respect to the resource competition theory (rct). Polyunsaturated fatty acids (PUFAs) are the most efficient biochemical variable distinguishing between nutritional modes of Ochromonas sp. Decreasing concentrations of PUFAs were observed in the order autotrophs, mixotrophs, heterotrophs. In mixotrophs and heterotrophs, concentrations of saturated fatty acids were higher than those of monounsaturated fatty acids and PUFAs as a result of bacterivory. Stigmasterol was the main sterol in Ochromonas sp., regardless of nutritional mode. Mixotrophs showed higher growth rates than heterotrophs, which could not be explained by rct. Heterotrophs, in turn, exhibited higher growth rates than autotrophs, which were cultured under the same light conditions as mixotrophs. Mixotrophs can synthesize PUFAs, which are important for many physiological functions such as membrane permeability and growth. Thus, mixotrophy facilitated efficient growth as well as the ability to synthesize complex and essential biomolecules. These strong synergetic effects are due to the combination of biochemical benefits of heterotrophic and autotrophic metabolic pathways and cannot be predicted by rct.}, language = {en} } @article{KruegerKulikovaLandgraf2018, author = {Kr{\"u}ger, Frank and Kulikova, Galina and Landgraf, Angela}, title = {Magnitudes for the historical 1885 (Belovodskoe), the 1887 (Verny) and the 1889 (Chilik) earthquakes in Central Asia determined from magnetogram recordings}, series = {Geophysical journal international}, volume = {215}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggy377}, pages = {1824 -- 1840}, year = {2018}, abstract = {Six large magnitude earthquakes in Central Asia which occurred at the end of the 19th century were recorded on early magnetographs in Great Britain. Scalar seismic moment estimates of the 1911 Chon-Kemin, the 1902 Atushi and the 1907 Karatag earthquakes in Central Asia were recently determined by historical seismogram modelling. For those events, we find agreement between moment magnitudes estimated from seismograms and from magnetograms. This supports the assumption of linear scaling of magnetogram amplitudes as function of M-0, which we then use to estimate the moment magnitudes for earlier large-magnitude events, that is, the 1885 Belovodskoe, 1887 Verny and 1889 Chilik earthquakes. The magnetometer data imply that the Chilik earthquake had M(W)7.9, slightly smaller than the Chon-Kemin event with M(W)8.0. The Verny earthquake, however, for which we estimate M(W)7.7, is likely larger than listed in catalogues (M7.3). Similarly, we find a larger magnitude M(W)7.6 (instead of the previous M6.9) for the Belovodskoe earthquake, but this remains uncertain due to measurement imprecision.}, language = {en} } @article{KruegerKulikovaLandgraf2017, author = {Kr{\"u}ger, Frank and Kulikova, Galina and Landgraf, Angela}, title = {Instrumental magnitude constraints for the 11 July 1889, Chilik earthquake}, series = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, volume = {432}, journal = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, publisher = {The Geological Society}, address = {London}, isbn = {978-1-86239-745-3}, issn = {0305-8719}, doi = {10.1144/SP432.8}, pages = {41 -- 72}, year = {2017}, abstract = {A series of large-magnitude earthquakes above 6.9 occurred in the northern Tien-Shan between 1885 and 1911. The Chilik earthquake of 11 July 1889, has been listed with a magnitude of 8.3, based on sparse macroseismic intensities, constrained by reported damage. Despite the existence of several juvenile fault scarps in the epicentral region, that are possibly associated with the 1889 earthquake, no through-going surface rupture having the dimensions expected for a magnitude 8.3 earthquake has been located - a puzzling dilemma. Could the magnitude have been overestimated? This would have major implications not only for the understanding of the earthquake series, but also for regional hazard estimates. Fortunately, a fragmentary record from an early Rebeur-Paschwitz seismometer exists for the Chilik event, recorded in Wilhelmshaven (Germany). To constrain the magnitude, we compare the late coda waves of this record with those of recent events from Central Asia, recorded on modern instruments in Germany and filtered with Rebeur-Paschwitz instrument characteristics. Additional constraints come from disturbances of historic magnetograms that exist from the Chilik and the 1911 Chon-Kemin earthquakes. Scaling of these historic records confirm a magnitude of about 8 for the 1889 Chilik earthquake, pointing towards a lower crustal contribution to the fault area.}, language = {en} } @misc{DonnerStreckerRoessleretal.2009, author = {Donner, Stefanie and Strecker, Manfred and R{\"o}ßler, Dirk and Ghods, Abdolreza and Kr{\"u}ger, Frank and Landgraf, Angela and Ballato, Paolo}, title = {Earthquake source models for earthquakes in Northern Iran}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32581}, year = {2009}, abstract = {The complex system of strike-slip and thrust faults in the Alborz Mountains, Northern Iran, are not well understood yet. Mainly structural and geomorphic data are available so far. As a more extensive base for seismotectonic studies and seismic hazard analysis we plan to do a comprehensive seismic moment tensor study also from smaller magnitudes (M < 4.5) by developing a new algorithm. Here, we present first preliminary results.}, language = {en} } @article{KleinpeterHeydenreichKochetal.2017, author = {Kleinpeter, Erich and Heydenreich, Matthias and Koch, Andreas and Krtitschka, Angela and Kr{\"u}ger, Tobias and Linker, Torsten}, title = {NMR spectroscopic conformational analysis of 4-methylene-cyclohexyl pivalateThe effect of sp(2) hybridization}, series = {Magnetic resonance in chemistry}, volume = {55}, journal = {Magnetic resonance in chemistry}, publisher = {Wiley}, address = {Hoboken}, issn = {0749-1581}, doi = {10.1002/mrc.4630}, pages = {1073 -- 1078}, year = {2017}, abstract = {The conformational equilibrium of the axial/equatorial conformers of 4-methylene-cyclohexyl pivalate is studied by dynamic NMR spectroscopy in a methylene chloride/freon mixture. At 153K, the ring interconversion gets slow on the nuclear magnetic resonance timescale, the conformational equilibrium (-G degrees) can be examined, and the barrier to ring interconversion (G(\#)) can be determined. The structural influence of sp(2) hybridization on both G degrees and G(\#) of the cyclohexyl moiety can be quantified.}, language = {en} }