@article{BersierFruchterStrolgeretal.2006, author = {Bersier, David and Fruchter, Andrew S. and Strolger, Louis-Gregory and Gorosabel, Javier and Levan, Andrew and Burud, Ingunn and Rhoads, James E. and Becker, Andrew C. and Cassan, Andrew C. and Chornock, Ryan and Covino, Stefano and De Jong, Roelof S. and Dominis, Dijana and Filippenko, Alexei V. and Hjorth, Jens and Holmberg, Johan and Malesani, Daniele and Mobasher, Bahram and Olsen, Kurt A. G. and Stefanon, Mauro and Castro Cer{\´o}n, Jos{\´e} Mar{\´i}a C. and Fynbo, Johan P. U. and Holland, Stephen T. and Kouveliotou, Chryssa and Pedersen, Hans-Georg and Tanvir, Nieal R. and Woosley, S. E.}, title = {Evidence for a supernova associated with the X-ray flash 020903}, issn = {0004-637X}, doi = {10.1086/502640}, year = {2006}, abstract = {We present ground-based and Hubble Space Telescope optical observations of the X-ray flash ( XRF) 020903, covering 300 days. The afterglow showed a very rapid rise in the first day, followed by a relatively slow decay in the next few days. There was a clear bump in the light curve after similar to 25 days, accompanied by a drastic change in the spectral energy distribution. The light curve and the spectral energy distribution are naturally interpreted as describing the emergence and subsequent decay of a supernova ( SN), similar to SN 1998bw. At peak luminosity, the SN is estimated to be 0.8 +/- 0.1 mag fainter than SN 1998bw. This argues in favor of the existence of a SN associated with this XRF. A spectrum obtained 35 days after the burst shows emission lines from the host galaxy. We use this spectrum to put an upper limit on the oxygen abundance of the host at [O/H] <= 0.6 dex. We also discuss a possible trend between the softness of several bursts and the early behavior of the optical afterglow, in the sense that XRFs and X-ray-rich gamma- ray bursts ( GRBs) seem to have a plateau phase or even a rising light curve. This can be naturally explained in models in which XRFs are similar to GRBs but are seen off the jet axis.}, language = {en} } @article{BeaulieuBennettFouqueetal.2006, author = {Beaulieu, Jean-Philippe and Bennett, David P. and Fouqu{\´e}, Pascal and Williams, Andrew and Dominik, Martin and Jorgensen, Uffe Grae and Kubas, Daniel and Cassan, Arnaud and Coutures, Christian and Greenhill, John and Hill, Kym and Menzies, John and Sackett, Penny D. and Albrow, Michael D. and Brillant, Stephane and Caldwell, John A. R. and Calitz, Johannes Jacobus and Cook, Kem H. and Corrales Cosmeli, Esperanza de Santa Cecilia and Desort, Morgan and Dieters, Stefan and Dominis, Dijana and Donatowicz, Jadzia and Hoffman, Martie and Kane, Stephen R. and Marquette, Jean-Baptiste and Martin, Ralph and Meintjes, Pieter and Pollard, Karen R. and Sahu, Kailash C. and Vinter, Christian and Wambsganss, Joachim and Woller, Kristian and Horne, Keith and Steele, Iain and Bramich, Daniel M. and Burgdorf, Martin and Snodgrass, Colin and Bode, Mike and Udalski, Andr}, title = {Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing}, issn = {0028-0836}, doi = {10.1038/Nature04441}, year = {2006}, abstract = {In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars ( the most common stars in our Galaxy), this model favours the formation of Earth-mass (M+) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (AU), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars(1-4). More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 AU from normal stars. Here we report the discovery of a 5.5(-2.7)(+5.5)M(+) planetary companion at a separation of 2.6(- 0.6)(+1.5) AU from a 0.22(-0.11)(+0.21)M(.) M-dwarf star, where M-. refers to a solar mass. (We propose to name it OGLE- 2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.}, language = {en} }