@article{ShikinVarykhalovPrudnikovaetal.2004, author = {Shikin, A. M. and Varykhalov, Andrei and Prudnikova, G. V. and Adamchuk, V. K. and Gudat, Wolfgang and Rader, Oliver}, title = {Photoemission from stepped W(110) : Initial or final state effect?}, issn = {0031-9007}, year = {2004}, abstract = {The electronic structure of the (110)-oriented terraces of stepped W(331) and W(551) is compared to the one of flat W(110) using angle-resolved photoemission. We identify a surface-localized state which develops perpendicular to the steps into a repeated band structure with the periodicity of the step superlattices. It is shown that a final-state diffraction process rather than an initial-state superlattice effect is the origin of the observed behavior and why it does not affect the entire band structure}, language = {en} } @article{VarykhalovShikinGudatetal.2005, author = {Varykhalov, Andrei and Shikin, A. M. and Gudat, Wolfgang and Moras, P. and Grazioli, C. and Carbone, C. and Rader, Oliver}, title = {Probing the ground state electronic structure of a correlated electron system by quantum well states: Ag/ Ni(111)}, issn = {0031-9007}, year = {2005}, abstract = {The ground state electronic properties of the strongly correlated transition metal Ni are usually not accessible from the excitation spectra measured in photoelectron spectroscopy. We show that the bottom of the Ni d band along [111] can be probed through the energy dependence of the phase of quantum-well states in Ag/Ni(111). Our model description of the quantum-well energies measured by angle-resolved photoemission determines the bottom of the Lambda(1) d band of Ni as 2.6 eV, in full agreement with standard local density theory and at variance with the values of 1.7-1.8 eV from direct angle-resolved photoemission experiments of Ni}, language = {en} }