@techreport{BrodeurMikolaCooketal.2024, type = {Working Paper}, author = {Brodeur, Abel and Mikola, Derek and Cook, Nikolai and Brailey, Thomas and Briggs, Ryan and Gendre, Alexandra de and Dupraz, Yannick and Fiala, Lenka and Gabani, Jacopo and Gauriot, Romain and Haddad, Joanne and Lima, Goncalo and Ankel-Peters, J{\"o}rg and Dreber, Anna and Campbell, Douglas and Kattan, Lamis and Fages, Diego Marino and Mierisch, Fabian and Sun, Pu and Wright, Taylor and Connolly, Marie and Hoces de la Guardia, Fernando and Johannesson, Magnus and Miguel, Edward and Vilhuber, Lars and Abarca, Alejandro and Acharya, Mahesh and Adjisse, Sossou Simplice and Akhtar, Ahwaz and Lizardi, Eduardo Alberto Ramirez and Albrecht, Sabina and Andersen, Synve Nygaard and Andlib, Zubaria and Arrora, Falak and Ash, Thomas and Bacher, Etienne and Bachler, Sebastian and Bacon, F{\´e}lix and Bagues, Manuel and Balogh, Timea and Batmanov, Alisher and Barschkett, Mara and Basdil, B. Kaan and Dower, Jaromneda and Castek, Ondrej and Caviglia-Harris, Jill and Strand, Gabriella Chauca and Chen, Shi and Chzhen, Asya and Chung, Jong and Collins, Jason and Coppock, Alexander and Cordeau, Hugo and Couillard, Ben and Crechet, Jonathan and Crippa, Lorenzo and Cui, Jeanne and Czymara, Christian and Daarstad, Haley and Dao, Danh Chi and Dao, Dong and Schmandt, Marco David and Linde, Astrid de and Melo, Lucas De and Deer, Lachlan and Vera, Micole De and Dimitrova, Velichka and Dollbaum, Jan Fabian and Dollbaum, Jan Matti and Donnelly, Michael and Huynh, Luu Duc Toan and Dumbalska, Tsvetomira and Duncan, Jamie and Duong, Kiet Tuan and Duprey, Thibaut and Dworschak, Christoph and Ellingsrud, Sigmund and Elminejad, Ali and Eissa, Yasmine and Erhart, Andrea and Etingin-Frati, Giulian and Fatemi-Pour, Elaheh and Federice, Alexa and Feld, Jan and Fenig, Guidon and Firouzjaeiangalougah, Mojtaba and Fleisje, Erlend and Fortier-Chouinard, Alexandre and Engel, Julia Francesca and Fries, Tilman and Fortier, Reid and Fr{\´e}chet, Nadjim and Galipeau, Thomas and Gallegos, Sebasti{\´a}n and Gangji, Areez and Gao, Xiaoying and Garnache, Clo{\´e} and G{\´a}sp{\´a}r, Attila and Gavrilova, Evelina and Ghosh, Arijit and Gibney, Garreth and Gibson, Grant and Godager, Geir and Goff, Leonard and Gong, Da and Gonz{\´a}lez, Javier and Gretton, Jeremy and Griffa, Cristina and Grigoryeva, Idaliya and Grtting, Maja and Guntermann, Eric and Guo, Jiaqi and Gugushvili, Alexi and Habibnia, Hooman and H{\"a}ffner, Sonja and Hall, Jonathan D. and Hammar, Olle and Kordt, Amund Hanson and Hashimoto, Barry and Hartley, Jonathan S. and Hausladen, Carina I. and Havr{\´a}nek, Tom{\´a}š and Hazen, Jacob and He, Harry and Hepplewhite, Matthew and Herrera-Rodriguez, Mario and Heuer, Felix and Heyes, Anthony and Ho, Anson T. Y. and Holmes, Jonathan and Holzknecht, Armando and Hsu, Yu-Hsiang Dexter and Hu, Shiang-Hung and Huang, Yu-Shiuan and Huebener, Mathias and Huber, Christoph and Huynh, Kim P. and Irsova, Zuzana and Isler, Ozan and Jakobsson, Niklas and Frith, Michael James and Jananji, Rapha{\"e}l and Jayalath, Tharaka A. and Jetter, Michael and John, Jenny and Forshaw, Rachel Joy and Juan, Felipe and Kadriu, Valon and Karim, Sunny and Kelly, Edmund and Dang, Duy Khanh Hoang and Khushboo, Tazia and Kim, Jin and Kjellsson, Gustav and Kjelsrud, Anders and Kotsadam, Andreas and Korpershoek, Jori and Krashinsky, Lewis and Kundu, Suranjana and Kustov, Alexander and Lalayev, Nurlan and Langlois, Audr{\´e}e and Laufer, Jill and Lee-Whiting, Blake and Leibing, Andreas and Lenz, Gabriel and Levin, Joel and Li, Peng and Li, Tongzhe and Lin, Yuchen and Listo, Ariel and Liu, Dan and Lu, Xuewen and Lukmanova, Elvina and Luscombe, Alex and Lusher, Lester R. and Lyu, Ke and Ma, Hai and M{\"a}der, Nicolas and Makate, Clifton and Malmberg, Alice and Maitra, Adit and Mandas, Marco and Marcus, Jan and Margaryan, Shushanik and M{\´a}rk, Lili and Martignano, Andres and Marsh, Abigail and Masetto, Isabella and McCanny, Anthony and McManus, Emma and McWay, Ryan and Metson, Lennard and Kinge, Jonas Minet and Mishra, Sumit and Mohnen, Myra and M{\"o}ller, Jakob and Montambeault, Rosalie and Montpetit, S{\´e}bastien and Morin, Louis-Philippe and Morris, Todd and Moser, Scott and Motoki, Fabio and Muehlenbachs, Lucija and Musulan, Andreea and Musumeci, Marco and Nabin, Munirul and Nchare, Karim and Neubauer, Florian and Nguyen, Quan M. P. and Nguyen, Tuan and Nguyen-Tien, Viet and Niazi, Ali and Nikolaishvili, Giorgi and Nordstrom, Ardyn and N{\"u}, Patrick and Odermatt, Angela and Olson, Matt and ien, Henning and {\"O}lkers, Tim and Vert, Miquel Oliver i. and Oral, Emre and Oswald, Christian and Ousman, Ali and {\"O}zak, {\"O}mer and Pandey, Shubham and Pavlov, Alexandre and Pelli, Martino and Penheiro, Romeo and Park, RyuGyung and Martel, Eva P{\´e}rez and Petrovičov{\´a}, Tereza and Phan, Linh and Prettyman, Alexa and Proch{\´a}zka, Jakub and Putri, Aqila and Quandt, Julian and Qiu, Kangyu and Nguyen, Loan Quynh Thi and Rahman, Andaleeb and Rea, Carson H. and Reiremo, Adam and Ren{\´e}e, La{\"e}titia and Richardson, Joseph and Rivers, Nicholas and Rodrigues, Bruno and Roelofs, William and Roemer, Tobias and Rogeberg, Ole and Rose, Julian and Roskos-Ewoldsen, Andrew and Rosmer, Paul and Sabada, Barbara and Saberian, Soodeh and Salamanca, Nicolas and Sator, Georg and Sawyer, Antoine and Scates, Daniel and Schl{\"u}ter, Elmar and Sells, Cameron and Sen, Sharmi and Sethi, Ritika and Shcherbiak, Anna and Sogaolu, Moyosore and Soosalu, Matt and Srensen, Erik and Sovani, Manali and Spencer, Noah and Staubli, Stefan and Stans, Renske and Stewart, Anya and Stips, Felix and Stockley, Kieran and Strobel, Stephenson and Struby, Ethan and Tang, John and Tanrisever, Idil and Yang, Thomas Tao and Tastan, Ipek and Tatić, Dejan and Tatlow, Benjamin and Seuyong, F{\´e}raud Tchuisseu and Th{\´e}riault, R{\´e}mi and Thivierge, Vincent and Tian, Wenjie and Toma, Filip-Mihai and Totarelli, Maddalena and Tran, Van-Anh and Truong, Hung and Tsoy, Nikita and Tuzcuoglu, Kerem and Ubfal, Diego and Villalobos, Laura and Walterskirchen, Julian and Wang, Joseph Taoyi and Wattal, Vasudha and Webb, Matthew D. and Weber, Bryan and Weisser, Reinhard and Weng, Wei-Chien and Westheide, Christian and White, Kimberly and Winter, Jacob and Wochner, Timo and Woerman, Matt and Wong, Jared and Woodard, Ritchie and Wroński, Marcin and Yazbeck, Myra and Yang, Gustav Chung and Yap, Luther and Yassin, Kareman and Ye, Hao and Yoon, Jin Young and Yurris, Chris and Zahra, Tahreen and Zaneva, Mirela and Zayat, Aline and Zhang, Jonathan and Zhao, Ziwei and Yaolang, Zhong}, title = {Mass reproducibility and replicability}, series = {I4R discussion paper series}, journal = {I4R discussion paper series}, number = {107}, publisher = {Institute for Replication}, address = {Essen}, issn = {2752-1931}, pages = {250}, year = {2024}, abstract = {This study pushes our understanding of research reliability by reproducing and replicating claims from 110 papers in leading economic and political science journals. The analysis involves computational reproducibility checks and robustness assessments. It reveals several patterns. First, we uncover a high rate of fully computationally reproducible results (over 85\%). Second, excluding minor issues like missing packages or broken pathways, we uncover coding errors for about 25\% of studies, with some studies containing multiple errors. Third, we test the robustness of the results to 5,511 re-analyses. We find a robustness reproducibility of about 70\%. Robustness reproducibility rates are relatively higher for re-analyses that introduce new data and lower for re-analyses that change the sample or the definition of the dependent variable. Fourth, 52\% of re-analysis effect size estimates are smaller than the original published estimates and the average statistical significance of a re-analysis is 77\% of the original. Lastly, we rely on six teams of researchers working independently to answer eight additional research questions on the determinants of robustness reproducibility. Most teams find a negative relationship between replicators' experience and reproducibility, while finding no relationship between reproducibility and the provision of intermediate or even raw data combined with the necessary cleaning codes.}, language = {en} } @article{NistorOsvikDavidssonetal.2002, author = {Nistor, C. and Osvik, A. and Davidsson, R. and Rose, Andreas and Wollenberger, Ursula and Pfeiffer, Dorothea and Emneus, J. and Fiksdal, L.}, title = {Detection of escherichia coli water by culture-based amperometric and luminometric methods}, year = {2002}, language = {en} } @article{NistorRoseFarreetal.2002, author = {Nistor, C. and Rose, Andreas and Farre, M. and Stoica, L. and Wollenberger, Ursula and Ruzgas, T. and Pfeiffer, Dorothea and Barcelo, Damia and Gorton, Lo and Emneus, J.}, title = {In-field monitoring of cleaning efficiency in waste water treatment plants using two phenolsensitive biosensors}, year = {2002}, language = {en} } @phdthesis{Rose2003, author = {Rose, Andreas}, title = {Analysis of phenolic compounds by dint of GDH-biosensors and immunoassays}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001048}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {In den letzten Jahren gerieten phenolische Substanzen, wie z.B. Chlor-, Nitrophenol oder Alkylphenolethoxylate aufgrund ihrer Toxizit{\"a}t sowie ihres kanzerogenen und endokrinen Potentials in das Interesse der {\"O}ffentlichkeit. Diese Substanzen gelangen in großen Mengen, z.B. aus industriellen Prozessen (Papier-, Kunststoff-, oder Lederindustrie) oder als Abbauprodukte von Pflanzenschutzmitteln in die Umwelt. Ziel dieser Arbeit war es, einfache biochemische Bestimmungsmethoden f{\"u}r verschiedene phenolische Umweltschadstoffe auf Basis biochemischer Erkennungselemente zu entwickeln. Diese sollten als Screeningmethoden in der Vor-Ort-Analytik einsetzbar sein. Die Anwendung sollte kosteng{\"u}nstig und einfach durchzuf{\"u}hren sein, so dass die Messung kein hochwissenschaftliches Personal erfordert. Daher stand im Hintergrund der Arbeit die Integration der Analysenmethode in ein kompaktes Handger{\"a}t. Zu diesem Zweck wurde ein Biosensor entwickelt der zur direkten Messung und in Kombination mit einem Immunoassay einsetzbar ist: 1.) Elektrochemischer Biosensor Ein elektrochemischer Biosensor stellt die Verbindung zwischen einer Elektrode und der biologischen Komponente dar. Als Messprinzip wurde die Amperometrie gew{\"a}hlt. Hierbei wird die Pr{\"a}senz des nachzuweisenden Stoffes durch die angelegte Spannung am Sensor visualisiert, da beim Vorhandensein ein Stromfluss gemessen wird. Um die Signalintensit{\"a}t zu erh{\"o}hen k{\"o}nnen Enzyme als Katalysatoren genutzt werden, die in der Lage sind die R{\"u}ckreaktion der Elektrodenreaktion zu realisieren. In diesem Fall wurde Glucose-Dehydrogenase (GDH) verwendet, die oxidierte phenolische Verbindungen reduzieren kann. Zusammen mit der Oxidation an der Sensoroberfl{\"a}che bildet sich ein Verst{\"a}rkungszyklus aus, der das urspr{\"u}ngliche Signal vielfach erh{\"o}ht. Wir waren in der Lage, GDH durch Einbetten in ein Polymerennetzwerk auf der Oberfl{\"a}che einer gedruckten Platin-Dickschicht-Elektrode zu immobilisieren. Als Resultat erhielten wir einen sehr empfindlichen und {\"a}ußerst stabilen Biosensor. Seine schnelle Ansprechzeit erm{\"o}glicht den Einsatz in automatisierten Fließsystemen zur Messung großer Probenzahlen. Der Einsatz in einem manuell betriebenen Handger{\"a}t konnte ebenfalls realisiert werden und brachte nur geringe Beeintr{\"a}chtigungen in bezug auf die Empfindlichkeit der Messung. Die erfolgreiche Implementierung des Biosensors in das Handger{\"a}t wurde in Rahmen eines internationalen Workshops in Barcelona, anhand der {\"U}berpr{\"u}fung der Reinigungsleistung von Kl{\"a}rwerken, gezeigt. 2.) Kombination mit Immunoassays Der Einsatzbereich der GDH-Biosensoren l{\"a}sst sich durch die Kombination mit anderen Techniken erweitern, wobei der Sensor zur Visualisierung der Nachweisreaktion dient. In diesem Fall kann der Sensor zur Bestimmung der Enzymaktivit{\"a}t von ß?Galactosidase (ßGal) verwendet werden. Der Nachweis geringster Enzymmengen wurde realisiert. Die ßGal wird zur Markierung eines Analytanalogen in Immunoassays verwendet, um die Bindung von Antik{\"o}rper und Analytmolek{\"u}l sichtbar zu machen. Im Immunoassay bildet sich ein Gleichgewicht zwischen Antik{\"o}rper, unmarkiertem Analyt und markiertem Analytanalog (Tracer) aus. {\"U}ber die Bestimmung der Enzymaktivit{\"a}t kann man die Analytkonzentration in der Probe errechnen. Wir haben unseren GDH-Biosensor erfolgreich mit zwei Techniken kombiniert. Zum Einen mit einem Assay zur Bestimmung von Nitrophenol, der in einem automatisiertem Fließsystem realisiert wurde. Hier wird die Mischung aus Antik{\"o}rpern, Analyt und Tracer {\"u}ber eine S{\"a}ule gegeben und gesp{\"u}lt. Die gebundenen Bestandteile werden durch den GDH-Biosensor quantifiziert. Zum Anderen wurde ein Kapillarimmunoassay entwickelt, der in das Handger{\"a}t integriert werden kann. Dabei wird der Antik{\"o}rper direkt an der Kapillare fixiert. Die Probe wird mit Tracer vermischt und in die Kapillare gegeben. Dort bildet sich das Gleichgewicht aus und weitere Probenbestandteile werden im Sp{\"u}lschritt eliminiert. Die Analytkonzentration wird durch die Bestimmung des gebunden Tracers (Aktivit{\"a}t der ßGal) mit Hilfe des GDH-Biosensors realisiert.}, language = {en} } @article{RosePfeifferSchelleretal.2001, author = {Rose, Andreas and Pfeiffer, Dorothea and Scheller, Frieder W. and Wollenberger, Ursula}, title = {Quinoprotein glucose dehydrogenasemodified thick-film electrodes for the amperometric detection of phenolic compounds in flow injection analysis}, year = {2001}, language = {en} } @article{Rose2001, author = {Rose, Andreas}, title = {Development of a new biosensor for monitoring xenoestrogens}, year = {2001}, language = {en} } @article{LopezSanchezBarethBoltenetal.2021, author = {L{\´o}pez-S{\´a}nchez, Aida and Bareth, Georg and Bolten, Andreas and Rose, Laura E. and Mansfeldt, Tim and Sapp, Melanie and Linst{\"a}dter, Anja}, title = {Effects of declining oak vitality on ecosystem multifunctionality}, series = {Forest ecology and management}, volume = {484}, journal = {Forest ecology and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2021.118927}, pages = {12}, year = {2021}, abstract = {Mediterranean oak woodlands are currently facing unprecedented degradation threats from oak decline. The Iberian oak decline "Seca", related to Phytophthora infection, causes crown defoliation that may adversely affect ecosystem services (ESs). We aim to improve our understanding of how Seca-induced declines in crown foliation affect the provision of multiple ecosystem services from understory vegetation. We selected holm (Quercus ilex) and cork oak (Q. suber) trees in a Spanish oak woodland and evaluated three proxies of canopy effects. One proxy (crown defoliation) solely captured Seca-dependent effects, one proxy solely captured Seca-independent effects (tree dimensions such as diameter and height), while the third proxy (tree vigor) captured overall canopy effects. We then used the best-performing proxies to assess canopy effects on key ecosystem services (ESs) such as aboveground net primary production (ANPP), grass and legume biomass, species diversity, litter decomposition rates, and a combined index of ecosystem multifunctionality.
We found that both types of canopy effects (i.e. Seca-dependent and Seca-independent effects) were related, indicating that ANPP was disproportionally more affected by Seca when defoliated trees were large. Responses of other ESs were mostly not significant, although lower species diversity was found under trees with intermediate vigor. Our results underline that a Seca-related decline in canopy density triggered a homogenization of ecosystem service delivery on the ecosystem scale. The ecosystem functions (EFs) under trees of low vigor are similar to that in adjacent open microsites indicating that the presence of vigorous (i.e. old and vital) trees is critical for maintaining EFs at a landscape level. Our results also highlight the importance of quantifying not only defoliation but also tree dimensions as both factors jointly and interactively modify canopy effects on ecosystem multifunctionality.}, language = {en} }