@unpublished{LendleinNeffeJerome2014, author = {Lendlein, Andreas and Neffe, Axel T. and Jerome, Christine}, title = {Advanced functional polymers for medicine}, series = {Advanced healthcare materials}, volume = {3}, journal = {Advanced healthcare materials}, number = {12}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2192-2640}, doi = {10.1002/adhm.201400718}, pages = {1939 -- 1940}, year = {2014}, language = {en} } @misc{NeffevonRuestenLangeBrauneetal.2014, author = {Neffe, Axel T. and von R{\"u}sten-Lange, Maik and Braune, Steffen and L{\"u}tzow, Karola and Roch, Toralf and Richau, Klaus and Kr{\"u}ger, Anne and Becherer, Tobias and Th{\"u}nemann, Andreas F. and Jung, Friedrich and Haag, Rainer and Lendlein, Andreas}, title = {Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99444}, year = {2014}, abstract = {Hemocompatible materials are needed for internal and extracorporeal biomedical applications, which should be realizable by reducing protein and thrombocyte adhesion to such materials. Polyethers have been demonstrated to be highly efficient in this respect on smooth surfaces. Here, we investigate the grafting of oligo- and polyglycerols to rough poly(ether imide) membranes as a polymer relevant to biomedical applications and show the reduction of protein and thrombocyte adhesion as well as thrombocyte activation. It could be demonstrated that, by performing surface grafting with oligo- and polyglycerols of relatively high polydispersity (>1.5) and several reactive groups for surface anchoring, full surface shielding can be reached, which leads to reduced protein adsorption of albumin and fibrinogen. In addition, adherent thrombocytes were not activated. This could be clearly shown by immunostaining adherent proteins and analyzing the thrombocyte covered area. The presented work provides an important strategy for the development of application relevant hemocompatible 3D structured materials.}, language = {en} } @article{SauterKratzLendlein2013, author = {Sauter, Tilman and Kratz, Karl and Lendlein, Andreas}, title = {Pore-size distribution controls shape-memory properties on the macro- and microscale of polymeric foams}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201300062}, pages = {1184 -- 1188}, year = {2013}, abstract = {Open porous foams with identical foam density but different pore-size distributions (bimodal or monomodal) are prepared from a shape-memory polyetherurethane (PEU) by thermally induced phase separation. The shape-memory effect of the two PEU foams is explored by cyclic thermomechanical compression tests and microstructural analysis. The obtained results reveal that the PEU foam with a bimodal pore-size distribution exhibits an increased shape-recovery under stress-free conditions, both on the macro- (foam level) as well as the microscale (pore level). While bimodal pore-size distributions induce microscale bending during compression, buckling occurs in foams with monomodal pore-size distributions, leading to both a reduced and delayed shape recovery.}, language = {en} } @article{RuederSauterKratzetal.2013, author = {R{\"u}der, Constantin and Sauter, Tilman and Kratz, Karl and Haase, Tobias and Peter, Jan and Jung, Friedrich and Lendlein, Andreas and Zohlnh{\"o}fer, Dietlind}, title = {Influence of fibre diameter and orientation of electrospun copolyetheresterurethanes on smooth muscle and endothelial cell behaviour}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {55}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-131787}, pages = {513 -- 522}, year = {2013}, abstract = {Polymers exhibiting cell-selective effects represent an extensive research field with high relevance for biomedical applications e.g. in the cardiovascular field supporting re-endothelialization while suppressing smooth muscle cell overgrowth. Such an endothelial cell-selective effect could be recently demonstrated for a copolyetheresterurethane (PDC) containing biodegradable poly(p-dioxanone) and poly(epsilon-caprolactone) segments, which selectively enhanced the adhesion of human umbilical vein endothelial cells (HUVEC) while suppressing the attachment of smooth muscle cells (SMC). In this study we investigated the influence of the fibre orientation (random and aligned) and fibre diameter (2 mu m and 500 nm) of electrospun PDC scaffolds on the adhesion, proliferation and apoptosis of HUVEC and SMC. Adhesion, viability and proliferation of HUVEC was diminished when the fibre diameter was reduced to a submicron scale, while the orientation of the microfibres did only slightly influence the cellular behaviour. In contrast, a submicron fibre diameter improved SMC viability. In conclusion, PDC scaffolds with micron-sized single fibres could be promising candidate materials for cell-selective stent coatings.}, language = {en} } @article{GhobadiHeuchelKratzetal.2013, author = {Ghobadi, Ehsan and Heuchel, Matthias and Kratz, Karl and Lendlein, Andreas}, title = {Simulating the shape-Memory behavior of amorphous switching domains of Poly(L-lactide) by molecular dynamics}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201200450}, pages = {1273 -- 1283}, year = {2013}, abstract = {The thermally induced shape-memory effect of polymers is typically characterized by cyclic uniaxial thermomechanical tests. Here, a molecular-dynamics (MD) simulation approach of such a cyclic uniaxial thermomechanical test is presented for amorphous switching domains of poly(L-lactide) (PLLA). Uniaxial deformation of the constructed PLLA models is simulated with a Parinello-Rahman scheme, as well as a pragmatic geometrical approach. We are able to describe two subsequent test cycles using the presented simulation approach. The obtained simulated shape-memory properties in both test cycles are similar and independent of the applied deformation protocols. The simulated PLLA shows high shape fixity ratios (Rf 94\%), but only a moderate shape recovery ratio is obtained (Rr 30\%). Finally, the structural changes during the simulated test are characterized by analysis of the changes in the dihedral angle distributions.}, language = {en} } @article{LendleinSauter2013, author = {Lendlein, Andreas and Sauter, Tilman}, title = {Shape-memory effect in polymers}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201300098}, pages = {1175 -- 1177}, year = {2013}, language = {en} } @inproceedings{FriessLendleinWischke2013, author = {Friess, Fabian and Lendlein, Andreas and Wischke, Christian}, title = {Investigating side-reactions during UV-induced preparation of oligo(epsilon-caprolactone) based shape-memory polymer networks}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {245}, booktitle = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2013}, language = {en} } @inproceedings{SauterLuetzowSchossigetal.2013, author = {Sauter, Tilman and L{\"u}tzow, Karola and Schossig, Michael and Kosmella, Hans and Weigel, Thomas and Kratz, Karl and Lendlein, Andreas}, title = {Pore morphology as structural parameter to tailor the shape-memory effect of polyuetherurethane foams}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {245}, booktitle = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2013}, language = {en} } @article{NeffevonRuestenLangeBrauneetal.2013, author = {Neffe, Axel T. and von R{\"u}sten-Lange, Maik and Braune, Steffen and L{\"u}tzow, Karola and Roch, Toralf and Richau, Klaus and Jung, Friedrich and Lendlein, Andreas}, title = {Poly(ethylene glycol) grafting to Poly(ether imide) membranes - influence on protein adsorption and Thrombocyte adhesion}, series = {Macromolecular bioscience}, volume = {13}, journal = {Macromolecular bioscience}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-5187}, doi = {10.1002/mabi.201300309}, pages = {1720 -- 1729}, year = {2013}, abstract = {The chain length and end groups of linear PEG grafted on smooth surfaces is known to influence protein adsorption and thrombocyte adhesion. Here, it is explored whether established structure function relationships can be transferred to application relevant, rough surfaces. Functionalization of poly(ether imide) (PEI) membranes by grafting with monoamino PEG of different chain lengths (M-n=1kDa or 10kDa) and end groups (methoxy or hydroxyl) is proven by spectroscopy, changes of surface hydrophilicity, and surface shielding effects. The surface functionalization does lead to reduction of adsorption of BSA, but not of fibrinogen. The thrombocyte adhesion is increased compared to untreated PEI surfaces. Conclusively, rough instead of smooth polymer or gold surfaces should be investigated as relevant models.}, language = {en} } @article{JulichGrunerLoewenbergNeffeetal.2013, author = {Julich-Gruner, Konstanze K. and L{\"o}wenberg, Candy and Neffe, Axel T. and Behl, Marc and Lendlein, Andreas}, title = {Recent trends in the chemistry of shape-memory polymers}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201200607}, pages = {527 -- 536}, year = {2013}, abstract = {Shape-memory polymers (SMPs) are stimuli-sensitive materials capable of performing complex movements on demand, which makes them interesting candidates for various applications, for example, in biomedicine or aerospace. This trend article highlights current approaches in the chemistry of SMPs, such as tailored segment chemistry to integrate additional functions and novel synthetic routes toward permanent and temporary netpoints. Multiphase polymer networks and multimaterial systems illustrate that SMPs can be constructed as a modular system of different building blocks and netpoints. Future developments are aiming at multifunctional and multistimuli-sensitive SMPs.}, language = {en} } @article{MelchertYongvongsoontornBehletal.2012, author = {Melchert, Christian and Yongvongsoontorn, Nunnarpas and Behl, Marc and Lendlein, Andreas}, title = {Synthesis and characterization of telechelic oligoethers with terminal cinnamylidene acetic acid moieties}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10364}, pages = {185 -- 190}, year = {2012}, abstract = {Purpose: The formation of photoresponsive hydrogels were reported by irradiation of star-shaped poly(ethylene glycol)s with terminal cinnamylidene acetic acid (CAA) groups, which are capable of a photoinduced [2+2] cycloaddition. In this study we explored whether oligo(ethylene glycol) s and oligo(propylene glycol)s of varying molecular architecture (linear or star-shaped) or molecular weights could be functionalized with CAA as terminal groups by esterification or by amide formation. Methods: Oligo(ethylene glycol) (OEG) and oligo(propylene glycol) (OPG) with varying molecular architecture (linear, star-shaped) and weight average molecular weights between 1000 and 5000 g.mol(-1) were functionalized by means of esterification of hydroxyl or amine endgroups with cinnamylidene acetic acid (CAA) or cinnamylidene acetyl chloride (CAC) as telechelic endgroups. The chemical structure, thermal properties, and molecular weights of the oligoethers obtained were determined by NMR spectroscopy, UV spectroscopy, DSC, and MALDI-TOF. Results: CAA-functionalized linear and star-shaped OEGs or OPGs could be obtained with a degree of functionalization higher than 90\%. In MALDI-TOF measurements an increase in Mw of about 150 g.mol(-1) (for each terminal end) after the functionalization reaction was observed. OEGCAA and OPGCAA showed an increase in glass transition temperature (T-g) from about -70 degrees C to -50 degrees C, compared to the unfunctionalized oligoethers. In addition, the melting temperature (T-m) of OEGCAA decreased from about 55 C to 30 degrees C, which can be accounted for by the hampered crystallization of the precursors because of the bulky CAA end groups as well as by the loss of the hydroxyl telechelic end groups. Conclusion: The synthesis of photoresponsive oligoethers containing cinnamylidene acetic acid as telechelic endgroup was reported and high degrees of functionalization could be achieved. Such photosensitive oligomers are promising candidates as reactive precursors, for the preparation of biocompatible high molecular weight polymers and polymer networks.}, language = {en} } @article{MelchertBehlNoecheletal.2012, author = {Melchert, Christian and Behl, Marc and N{\"o}chel, Ulrich and Lendlein, Andreas}, title = {Influence of Comesogens on the Thermal and Actuation Properties of 2-tert-Butyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone Based Nematic Main-Chain Liquid Crystalline Elastomers}, series = {Macromolecular materials and engineering}, volume = {297}, journal = {Macromolecular materials and engineering}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-7492}, doi = {10.1002/mame.201200238}, pages = {1203 -- 1212}, year = {2012}, abstract = {Although the shape-changing capabilities of LCEs hold great potential for applications ranging from micropumps to artificial muscles, customization of the LCE functionality to the applications' requirements is still a challenge. It is studied whether the orientation of NMC-LCPs and NMC-LCEs based on 2-tert-butyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone can be enhanced by copolymerization with 2-methyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone or 2,6-bis[4-(4-pentenyl-oxy)-benzoyl]anthracene. An increasing content of the comonomers stabilizes the nematic phase, which enables a tailoring of T-NI for the NMC-LCP between 45 and 68 degrees C, while for the NMC-LCE T-NI ranges between 69 and 76 degrees C. In addition, NMC-LCE show an increased actuation performance.}, language = {en} } @article{RazzaqBehlFranketal.2012, author = {Razzaq, Muhammad Yasar and Behl, Marc and Frank, Ute and Koetz, Joachim and Szczerba, Wojciech and Lendlein, Andreas}, title = {Oligo(omega-pentadecalactone) decorated magnetic nanoparticles}, series = {Journal of materials chemistry}, volume = {22}, journal = {Journal of materials chemistry}, number = {18}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c2jm16146j}, pages = {9237 -- 9243}, year = {2012}, abstract = {Hybrid magnetic nanoparticles (mgNP) with a magnetite core diameter of 10 +/- 1 nm surface functionalized with oligo(omega-pentadecalactone) (OPDL) oligomers with M-n between 1300 and 3300 g mol(-1) could be successfully prepared having OPDL grafted from 200 mg g(-1) to 2170 mg g(-1). The particles are dispersible in chloroform resulting in stable suspensions. Magnetic response against an external magnetic field proved the superparamagnetic nature of the particles with a low coercivity (B-c) value of 297 mu T. The combination of the advantageous superparamagnetism of the mgNP with the exceptional stability of OPDL makes these novel hybrid mgNP promising candidates as multifunctional building blocks for magnetic nanocomposites with tunable physical properties.}, language = {en} } @article{GhobadiHeuchelKratzetal.2012, author = {Ghobadi, Ehsan and Heuchel, Matthias and Kratz, Karl and Lendlein, Andreas}, title = {Simulation of volumetric swelling of degradable poly[(rac-lactide)-co-glycolide] based polyesterurethanes containing different urethane-linkers}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10432}, pages = {293 -- 301}, year = {2012}, abstract = {Aim: The hydrolytic degradation behavior of degradable aliphatic polyester-based polymers is strongly influenced by the uptake or transport of water into the polymer matrix and also the hydrolysis rate of ester bonds. Methods: We examined the volumetric swelling behavior of poly[(rac-lactide)-co-glycolide] (PLGA) and PLGA-based polyurethanes (PLGA-PU) with water contents of 0 wt\%, 2 wt\% and 7 wt\% water at 310 K using a molecular modeling approach. Polymer systems with a number average molecular weight of M-n = 10,126 g.mol(-1) were constructed from PLGA with a lactide content of 67 mol\%, whereby PLGA-PU systems were composed of five PLGA segments with M-n = 2052 g.mol(-1), which were connected via urethane linkers originated from 2,2,4-trimethyl hexamethylene-1,6-diisocyanate (TMDI), hexamethyl-1,6-diisocyanate (HDI), or L-lysine-1,6-diisocyanate (LDI). Results: The calculated densities of the dry PLGA-PU systems were found to be lower than for pure PLGA. The obtained volumetric swelling of the PLGA-PU was depending on the type of urethane linker, whereby all swollen PLGA-PUs contained larger free volume distribution compared to pure PLGA. The mean square displacement curves for dry PLGA and PLGA-PUs showed that urethane linker units reduce the mobility of the polymer chains, while an increase in backbone atoms mobility was found, when water was added to these systems. Consequently, an increased water uptake of PLGA-PU matrices combined with a higher mobility of the chain segments should result in an accelerated hydrolytic chain scission rate in comparison to PLGA. Conclusions: It can be anticipated that the incorporation of urethane linkers might be a helpful tool to adjust the degradation behavior of polyesters.}, language = {en} } @article{GhobadiHeuchelKratzetal.2012, author = {Ghobadi, Ehsan and Heuchel, Matthias and Kratz, Karl and Lendlein, Andreas}, title = {Influence of different heating regimes on the shape-recovery behavior of poly(L-lactide) in simulated thermomechanical tests}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10440}, pages = {259 -- 264}, year = {2012}, abstract = {Aim: Multifunctional polymer-based biomaterials, which combine degradability with a shape-memory capability and in this way enable the design of actively moving implants such as self-anchoring implants or controlled release systems, have been recently introduced. Of particular interest are approved degradable polymers such as poly(L-lactide) (PLLA), which can be easily functionalized with a shape-memory effect. In the case of semicrystalline PLLA, the glass transition can be utilized as shape-memory switching domain. Methods: In this work we applied a fully atomistic molecular dynamics simulation to study the shape-memory behavior of PLLA. A heating-deformation-cooling programming procedure was applied to atomistic PLLA packing models followed by a recovery module under stress-free conditions allowing the shape recovery. The recovery was simulated by heating the samples from T-low = 250 K to T-high = 500 K with different heating rates beta of 125, 40 and 4 K.ns(-1). Results: We could demonstrate that the obtained strain recovery rate (R-r) was strongly influenced by the applied simulation time and heating rate, whereby R-r values in the range from 46\% to 63\% were achieved. On its own the application of a heating rate of 4 K.ns(-1) enabled us to determine a characteristic switching temperature of T-sw = 473 K for the modeled samples. Conclusions: We anticipate that the atomistic modeling approach presented should be capable of enabling further study of T-sw with respect to the molecular structure of the investigated SMP and therefore could be applied in the context of design and development of new shape-memory (bio) materials.}, language = {en} } @article{WangHeuchelFangetal.2012, author = {Wang, Li and Heuchel, Matthias and Fang, Liang and Kratz, Karl and Lendlein, Andreas}, title = {Influence of a polyester coating of magnetic nanoparticles on magnetic heating behavior of shape-memory polymer-based composites}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10293}, pages = {203 -- 209}, year = {2012}, abstract = {Background: Magnetic composites of thermosensitive shape-memory polymers (SMPs) and magnetite nanoparticles (MNPs) allow noncontact actuation of the shape-memory effect in an alternating magnetic field. In this study, we investigated whether the magnetic heating capability of cross-linked poly(epsilon-caprolactone)/MNP composites (cPCLC) could be improved by covalent coating of MNPs with oligo(epsilon-caprolactone) (OCL). Methods: Two different types of cPCLC containing uncoated and OCL-coated MNP with identical magnetite weight content were prepared by thermally induced polymerization of poly(epsilon-caprolactone) diisocyanatoethyl methacrylate. Both cPCLCs exhibited a melting transition at T-m = 48 degrees C, which could be used as switching transition. Results: The dispersion of the embedded nanoparticles within the polymer matrix could be substantially improved, when the OCL-coated MNPs were used, as visualized by scanning electron microscopy. We could further demonstrate that in this way the maximal achievable bulk temperature (T-bulk) obtained within the cPCLC test specimen in magnetic heating experiments at a magnetic field strength of H = 30 kA.m(-1) could be increased from T bulk = 48 degrees C to T bulk = 74 degrees C.}, language = {en} } @article{SauterLuetzowSchossigetal.2012, author = {Sauter, Tilman and L{\"u}tzow, Karola and Schossig, Michael and Kosmella, Hans and Weigel, Thomas and Kratz, Karl and Lendlein, Andreas}, title = {Shape-memory properties of polyetherurethane foams prepared by thermally induced phase separation}, series = {Advanced engineering materials}, volume = {14}, journal = {Advanced engineering materials}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-1656}, doi = {10.1002/adem.201200127}, pages = {818 -- 824}, year = {2012}, abstract = {In this study, we report the preparation of two structurally different shape-memory polymer foams by thermally induced phase separation (TIPS) from amorphous polyetherurethanes. Foams with either a homogeneous, monomodal, or with a hierarchically structured, bimodal, pore size distribution are obtained by adoption of the cooling protocol. The shape-memory properties have been investigated for both foam structures by cyclic, thermomechanical experiments, while the morphological changes on the micro scale (pore level) have been compared to the macro scale by an in situ micro compression device experiment. The results show that the hierarchically structured foam achieves higher shape-recovery rates and a higher total recovery as compared to the homogeneous foam, which is due to an increased energy storage capability by micro scale bending of the hierarchically structured foam compared to pure compression of the homogeneous foam.}, language = {en} } @article{SchneiderKohlSauteretal.2012, author = {Schneider, Tobias and Kohl, Benjamin and Sauter, Tilman and Kratz, Karl and Lendlein, Andreas and Ertel, Wolfgang and Schulze-Tanzil, Gundula}, title = {Influence of fiber orientation in electrospun polymer scaffolds on viability, adhesion and differentiation of articular chondrocytes}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {52}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {2-4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-2012-1608}, pages = {325 -- 336}, year = {2012}, abstract = {Degradable polymers with a tailorable degradation rate might be promising candidate materials for biomaterial-based cartilage repair. In view of the poor intrinsic healing capability of cartilage, implantation of autologous chondrocytes seeded on a biocompatible slow degrading polymer might be an encouraging approach to improve cartilage repair in the future. This study was undertaken to test if the fiber orientation (random versus aligned) of two different degradable polymers and a polymer intended for long term applications could influence primary articular chondrocytes growth and ultrastructure. A degradable copoly(ether) esterurethane (PDC) was synthesized via co-condensation of poly(p-dioxanone) diol and poly(epsilon-caprolactone) diol using an aliphatic diisocyanate as linker. Poly(p-dioxanone) (PPDO) was applied as commercially available degradable polymer, while polyetherimide (PEI) was chosen as biomaterial enabling surface functionalization. The fibrous scaffolds of PDC and PPDO were obtained by electrospinning using 1,1,1,3,3,3 hexafluoro-2-propanol (HFP), while for PEI dimethyl acetamide (DMAc) was applied as solvent. Primary porcine articular chondrocytes were seeded at different cell densities on the fibrous polymer scaffolds and analyzed for viability (fluorescein diacetate/ethidiumbromide staining), for type II collagen synthesis (immunolabelling), ultrastructure and orientation on the fibers (SEM: scanning electron microscopy). Vital chondrocytes adhered on all electrospun scaffolds irrespective of random and aligned topologies. In addition, the chondrocytes produced the cartilage-specific type II collagen on all tested polymer topologies suggesting their differentiated functions. SEM revealed an almost flattened chondrocytes shape on scaffolds with random fiber orientation: whereby chondrocytes growth remained mainly restricted to the scaffold surface. On aligned fibers the chondrocytes exhibited a more spindle-shaped morphology with rougher cell surfaces but only a minority of the cells aligned according to the fibers. As a next step the reduction of the fiber diameter of electrospun scaffolds should be addressed as an important parameter to mimic cartilage ECM structure.}, language = {en} } @article{FriessWischkeBehletal.2012, author = {Friess, Fabian and Wischke, Christian and Behl, Marc and Lendlein, Andreas}, title = {Oligo(epsilon-caprolactone)-based polymer networks prepared by photocrosslinking in solution}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10372}, pages = {273 -- 279}, year = {2012}, abstract = {Purpose: Polymer networks with adjustable properties prepared from endgroup-functionalized oligoesters by UV-crosslinking in melt have evolved into versatile multifunctional biomaterials. In addition to the molecular weight or architecture of precursors, the reaction conditions for crosslinking are pivotal for the polymer network properties. Crosslinking of precursors in solution may facilitate low-temperature processes and are compared here to networks synthesized in melt. Methods: Oligo(epsilon-caprolactone)-(z) methacrylate (oCL-(z) IEMA) precursors with a linear (z = di) or a four-armed star-shaped (z = tetra) architecture were crosslinked by radical polymerization in melt or in solution with UV irradiation. The thermal, mechanical, and swelling properties of the polymer networks obtained were characterized. Results: Crosslinking in solution resulted in materials with lower Young's moduli (E), lower maximum stress (sigma(max)), and higher elongation at break (epsilon(B)) as determined at 70 degrees C. Polymer networks from 8 kDa star-shaped precursors exhibited poor elasticity when synthesized in the melt, but can be established as stretchable materials with a semi-crystalline morphology, a high gel-content, and a high elongation at break when prepared in solution. Conclusions: The crosslinking condition of methacrylate functionalized precursors significantly affected network properties. For some types of precursors such as star-shaped telechelics, synthesis in solution provided semi-crystalline elastic materials that were not accessible from crosslinking in melt.}, language = {en} } @article{TartivelBehlSchroeteretal.2012, author = {Tartivel, Lucile and Behl, Marc and Schr{\"o}ter, Michael and Lendlein, Andreas}, title = {Hydrogel networks based on ABA triblock copolymers}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10295}, pages = {243 -- 248}, year = {2012}, abstract = {Background: Triblock copolymers from hydrophilic oligo(ethylene glycol) segment A and oligo(propylene glycol) segment B, providing an ABA structure (OEG-OPG-OEG triblock), are known to be biocompatible and are used as self-solidifying gels in drug depots. A complete removal of these depots would be helpful in cases of undesired side effects of a drug, but this remains a challenge as they liquefy below their transition temperature. Therefore we describe the synthesis of covalently cross-linked hydrogel networks. Method: Triblock copolymer-based hydrogels were created by irradiating aqueous solutions of the corresponding macro-dimethacrylates with UV light. The degree of swelling, swelling kinetics, mechanical properties and morphology of the networks were investigated. Results: Depending on precursor concentration, equilibrium degree of swelling of the films ranged between 500\% and 880\% and was reached in 1 hour. In addition, values for storage and loss moduli of the hydrogel networks were in the 100 Pa to 10 kPa range. Conclusion: Although OEG-OPG-OEG triblocks are known for their micellization, which could hamper polymer network formation, reactive OEG-OPG-OEG triblock oligomers could be successfully polymerized into hydrogel networks. The degree of swelling of these hydrogels depends on their molecular weight and on the oligomer concentration used for hydrogel preparation. In combination with the temperature sensitivity of the ABA triblock copolymers, it is assumed that such hydrogels might be beneficial for future medical applications -e.g., removable drug release systems.}, language = {en} }