@article{AbdallaAbramowskiAharonianetal.2016, author = {Abdalla, Hassan E. and Abramowski, Attila and Aharonian, Felix A. and Benkhali, Fai{\c{c}}al Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Arrieta, M. and Aubert, Pierre and Backes, Michael and Balzer, Arnim and Barnard, Michelle and Becherini, Yvonne and Tjus, Julia Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, K. and Birsin, E. and Blackwell, R. and Bottcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Bulik, Tomasz and Capasso, M. and Carr, John and Casanova, Sabrina and Chakraborty, N. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Chen, Andrew and Chevalier, J. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Condon, B. and Conrad, Jan and Couturier, C. and Cui, Y. and Davids, I. D. and Degrange, B. and Deil, Christoph and deWilt, P. and Djannati-Atai, Arache and Domainko, Wilfried and Donath, Axel and Dubus, Guillaume and Dutson, Kate and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, Stuart and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Funk, S. and F{\"u}ßling, Matthias and Gabici, Stefano and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, Gianluca and Giebels, B. and Glicenstein, J. F. and Gottschall, Daniel and Goyal, A. and Grondin, M. -H. and Grudzinska, M. and Hadasch, Daniela and Hahn, J. and Hawkes, J. and Heinzelmann, G. and Henri, Gilles and Hermann, G. and Hervet, Olivier and Hillert, A. and Hinton, James Anthony and Hofmann, Werner and Hoischen, Clemens and Holler, M. and Horns, D. and Ivascenko, Alex and Jacholkowska, A. and Jamrozy, Marek and Janiak, M. and Jankowsky, D. and Jankowsky, Felix and Jingo, M. and Jogler, Tobias and Jouvin, Lea and Jung-Richardt, Ira and Kastendieck, M. A. and Katarzynski, Krzysztof and Katz, Uli and Kerszberg, D. and Khelifi, B. and Kieffer, M. and King, J. and Klepser, S. and Klochkov, Dmitry and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, Michael and Krayzel, F. and Kruger, P. P. and Laffon, H. and Lamanna, G. and Lau, Jeanie and Lees, J. -P. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, Thomas and Lorentz, M. and Lui, R. and Lypova, Iryna and Marandon, Vincent and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, Michael and Meintjes, Petrus Johannes and Menzler, U. and Meyer, Manuel and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, T. and de Naurois, Mathieu and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, Hirokazu and Ohm, Stefan and Oettl, S. and Ostrowski, M. and Oya, I. and Padovani, Marco and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, Helen and Prokhorov, Dmitry and Prokoph, Heike and Puehlhofer, Gerd and Punch, Michael and Quirrenbach, Andreas and Raab, S. and Reimer, Anita and Reimer, Olaf and Renaud, M. and de los Reyes, R. and Rieger, Frank and Romoli, Carlo and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Salek, David and Sanchez, David A. and Santangelo, Andrea and Sasaki, Manami and Schlickeiser, Reinhard and Schussler, F. and Schulz, Andreas and Schwanke, U. and Schwemmer, S. and Seyffert, A. S. and Shafi, N. and Simoni, R. and Sol, H. and Spanier, Felix and Spengler, G. and Spiess, F. and Stawarz, Lukasz and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, Martin and Trichard, C. and Tuffs, R. and van der Walt, Johan and van Eldik, Christopher and van Soelen, Brian and Vasileiadis, Georges and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, Jacco and Voisin, F. and Voelk, Heinrich J. and Vuillaume, Thomas and Wadiasingh, Z. and Wagner, Stefan J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, Alicja and Willmann, P. and Woernlein, A. and Wouters, Denis and Yang, R. and Zabalza, Victor and Zaborov, D. and Zacharias, M. and Zdziarski, A. A. and Zech, Andreas and Zefi, F. and Ziegler, A. and Zywucka, Natalia}, title = {Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with HESS}, series = {Physical review letters}, volume = {117}, journal = {Physical review letters}, publisher = {American Physical Society}, address = {College Park}, organization = {HESS Collaboration}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.117.111301}, pages = {6}, year = {2016}, abstract = {The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using gamma-ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant gamma-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section . These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach values of 6 x 10(-26) cm(3) s(-1) in the W+W- channel for a DM particle mass of 1.5 TeV, and 2 x 10(-26) cm(3) s(-1) in the tau(+)tau(-) channel for a 1 TeV mass. For the first time, ground-based gamma-ray observations have reached sufficient sensitivity to probe values expected from the thermal relic density for TeV DM particles.}, language = {en} } @misc{AichertStaigerSchulteMaeteretal.2010, author = {Aichert, Ingrid and Staiger, Anja and Schulte-M{\"a}ter, Anne and Becker-Redding, Ulrike and Stahn, Corinna and Peschke, Claudia and Heide, Judith and Ott, Susan and Herrmann, Heike and V{\"o}lsch, Juliane and Mayer, J{\"o}rg and Rohnke, Lucie and Frank, Ulrike and Stadie, Nicole and Jentsch, Nadine and Blech, Anke and Kurtenbach, Stephanie and Thieke, Johanna and Schr{\"o}der, Astrid and Stahn, Corinna and H{\"o}rnig, Robin and Burchert, Frank and De Bleser, Ria and Heister, Julian and Bartels, Luise and W{\"u}rzner, Kay-Michael and B{\"o}hme, Romy and Burmester, Juliane and Krajewski, Melanie and Nager, Wido and Jungeh{\"u}lsing, Gerhard Jan and Wartenburger, Isabell and J{\"o}bges, Michael and Schwilling, Eleonore and Lidzba, Karen and Winkler, Susanne and Konietzko, Andreas and Kr{\"a}geloh-Mann, Ingeborg and Rilling, Eva and Wilken, Rainer and Wismann, Kathrin and Glandorf, Birte and Hoffmann, Hannah and Hinnenkamp, Christiane and Rohlmann, Insa and Ludewigt, Jacqueline and Bittner, Christian and Orlov, Tatjana and Claus, Katrin and Ehemann, Christine and Winnecken, Andreas and Hummel, Katja and Breitenstein, Sarah}, title = {Spektrum Patholinguistik = Schwerpunktthema: Von der Programmierung zur Artikulation : Sprechapraxie bei Kindern und Erwachsenen}, number = {3}, editor = {Wahl, Michael and Stahn, Corinna and Hanne, Sandra and Fritzsche, Tom}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, organization = {Verband f{\"u}r Patholinguistik e. V. (vpl)}, isbn = {978-3-86956-079-3}, issn = {1869-3822}, doi = {10.25932/publishup-4578}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45470}, year = {2010}, abstract = {Das 3. Herbsttreffen Patholinguistik fand am 21. November 2009 an der Universit{\"a}t Potsdam statt. Der vorliegende Tagungsband enth{\"a}lt die drei Hauptvortr{\"a}ge zum Schwerpunktthema „Von der Programmierung zu Artikulation: Sprechapraxie bei Kindern und Erwachsenen". Dar{\"u}ber hinaus enth{\"a}lt der Band die Beitr{\"a}ge aus dem Spektrum Patholinguistik, sowie die Abstracts der Posterpr{\"a}sentationen.}, language = {de} } @misc{AbramowskiAharonianBenkhalietal.2015, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Backes, Michael and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, Julia Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, Konrad and Birsin, E. and Biteau, Jonathan and B{\"o}ttcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Chadwick, Paula M. and Chakraborty, Nachiketa and Chalme-Calvet, R. and Chaves, Ryan C. G. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, Claire and Cui, Yudong and Davids, Isak Delberth and Degrange, Bernhard and Deil, Christoph and deWilt, P. and Djannati-Ata{\"i}, A. and Domainko, Wilfried and Donath, Axel and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, Tanya and Egberts, Kathrin and Eger, Peter and Espigat, P. and Farnier, C. and Fegan, Stephen and Feinstein, Fabrice and Fernandes, Milton Virgilio and Fernandez, Diane and Fiasson, A. and Fontaine, Gerard and F{\"o}rster, Andreas and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Yves A. and Garrigoux, Tania and Giavitto, G. and Giebels, Berrie and Glicenstein, Jean-Francois and Gottschall, Daniel and Grondin, M. -H. and Grudzinska, M. and Hadasch, Daniela and Haeffner, S. and Hahn, Joachim and Harris, Jonathan and Heinzelmann, G{\"o}tz and Henri, G. and Hermann, German and Hervet, O. and Hillert, Andreas and Hinton, James Anthony and Hofmann, Werner and Hofverberg, Petter and Holler, Markus and Horns, Dieter and Ivascenko, Alex and Jacholkowska, A. and Jahn, C. and Jamrozy, Marek and Janiak, M. and Jankowsky, F. and Jung-Richardt, I. and Kastendieck, Max Anton and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, Michel and Klepser, S. and Klochkov, Dmitry and Kluzniak, W. and Kolitzus, David and Komin, Nu and Kosack, Karl and Krakau, Steffen and Krayzel, F. and Krueger, Pat P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lefranc, Valentin and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lohse, Thomas and Lopatin, A. and Lu, Chia-Chun and Marandon, Vincent and Marcowith, Alexandre and Marx, Ramin and Maurin, G. and Maxted, Nigel and Mayer, Michael and McComb, T. J. Lowry and Mehault, J. and Meintjes, P. J. and Menzler, Ulf and Meyer, M. and Mitchell, Alison M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, Thomas and de Naurois, Mathieu and Niemiec, J. and Nolan, Sam J. and Oakes, Louise and Odaka, Hirokazu and Ohm, S. and Optiz, Bj{\"o}rn and Ostrowski, Michal and Oya, I. and Panter, Michael and Parsons, R. Daniel and Arribas, M. Paz and Pekeur, Nikki W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, Helen and P{\"u}hlhofer, Gerd and Punch, M. and Quirrenbach, A. and Raab, S. and Reichardt, I. and Reimer, Anita and Reimer, Olaf and Renaud, Metz and de los Reyes, Raquel and Rieger, Frank and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, Vardan and Salek, D. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, Reinhard and Schuessler, F. and Schulz, A. and Schwanke, Ullrich and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spanier, Felix and Spengler, G. and Spies, Franziska and Stawarz, Lukasz and Steenkamp, Riaan and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, Martin and Trichard, C. and Valerius, K. and van Eldik, C. and van Soelen, B. and Vasileiadis, Georges and Veh, J. and Venter, Christo and Viana, Aion and Vincent, P. and Vink, Jacco and V{\"o}lk, Heinrich J. and Volpe, Francesca and Vorster, Martine and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and Ward, Martin and Weidinger, Matthias and Weitzel, Quirin and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, Ruizhi and Zabalza, Victor and Zaborov, Dmitry and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zechlin, Hannes -S.}, title = {H.E.S.S. detection of TeV emission from the interaction region between the supernova remnant G349.7+0.2 and a molecular cloud (vol 574, A100, 2015)}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {580}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201425070e}, pages = {2}, year = {2015}, language = {en} } @article{FoerstnerBoettgerMoldavskietal.2023, author = {F{\"o}rstner, Bernd Rainer and B{\"o}ttger, Sarah Jane and Moldavski, Alexander and Bajbouj, Malek and Pfennig, Andrea and Manook, Andre and Ising, Marcus and Pittig, Andre and Heinig, Ingmar and Heinz, Andreas and Mathiak, Klaus and Schulze, Thomas G. and Schneider, Frank and Kamp-Becker, Inge and Meyer-Lindenberg, Andreas and Padberg, Frank and Banaschewski, Tobias and Bauer, Michael and Rupprecht, Rainer and Wittchen, Hans-Ulrich and Rapp, Michael Armin and Tschorn, Mira}, title = {The associations of positive and negative valence systems, cognitive systems and social processes on disease severity in anxiety and depressive disorders}, series = {Frontiers in psychiatry}, volume = {14}, journal = {Frontiers in psychiatry}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-0640}, doi = {10.3389/fpsyt.2023.1161097}, pages = {10}, year = {2023}, abstract = {Background Anxiety and depressive disorders share common features of mood dysfunctions. This has stimulated interest in transdiagnostic dimensional research as proposed by the Research Domain Criteria (RDoC) approach by the National Institute of Mental Health (NIMH) aiming to improve the understanding of underlying disease mechanisms. The purpose of this study was to investigate the processing of RDoC domains in relation to disease severity in order to identify latent disorder-specific as well as transdiagnostic indicators of disease severity in patients with anxiety and depressive disorders. Methods Within the German research network for mental disorders, 895 participants (n = 476 female, n = 602 anxiety disorder, n = 257 depressive disorder) were recruited for the Phenotypic, Diagnostic and Clinical Domain Assessment Network Germany (PD-CAN) and included in this cross-sectional study. We performed incremental regression models to investigate the association of four RDoC domains on disease severity in patients with affective disorders: Positive (PVS) and Negative Valance System (NVS), Cognitive Systems (CS) and Social Processes (SP). Results The results confirmed a transdiagnostic relationship for all four domains, as we found significant main effects on disease severity within domain-specific models (PVS: \& beta; = -0.35; NVS: \& beta; = 0.39; CS: \& beta; = -0.12; SP: \& beta; = -0.32). We also found three significant interaction effects with main diagnosis showing a disease-specific association. Limitations The cross-sectional study design prevents causal conclusions. Further limitations include possible outliers and heteroskedasticity in all regression models which we appropriately controlled for. Conclusion Our key results show that symptom burden in anxiety and depressive disorders is associated with latent RDoC indicators in transdiagnostic and disease-specific ways.}, language = {en} } @article{SaltikoffFriedrichSoderholmetal.2019, author = {Saltikoff, Elena and Friedrich, Katja and Soderholm, Joshua and Lengfeld, Katharina and Nelson, Brian and Becker, Andreas and Hollmann, Rainer and Urban, Bernard and Heistermann, Maik and Tassone, Caterina}, title = {An Overview of Using Weather Radar for Climatological Studies: Successes, Challenges, and Potential}, series = {Bulletin of the American Meteorological Society}, volume = {100}, journal = {Bulletin of the American Meteorological Society}, number = {9}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {0003-0007}, doi = {10.1175/BAMS-D-18-0166.1}, pages = {1739 -- 1751}, year = {2019}, abstract = {Weather radars have been widely used to detect and quantify precipitation and nowcast severe weather for more than 50 years. Operational weather radars generate huge three-dimensional datasets that can accumulate to terabytes per day. So it is essential to review what can be done with existing vast amounts of data, and how we should manage the present datasets for the future climatologists. All weather radars provide the reflectivity factor, and this is the main parameter to be archived. Saving reflectivity as volumetric data in the original spherical coordinates allows for studies of the three-dimensional structure of precipitation, which can be applied to understand a number of processes, for example, analyzing hail or thunderstorm modes. Doppler velocity and polarimetric moments also have numerous applications for climate studies, for example, quality improvement of reflectivity and rain rate retrievals, and for interrogating microphysical and dynamical processes. However, observational data alone are not useful if they are not accompanied by sufficient metadata. Since the lifetime of a radar ranges between 10 and 20 years, instruments are typically replaced or upgraded during climatologically relevant time periods. As a result, present metadata often do not apply to past data. This paper outlines the work of the Radar Task Team set by the Atmospheric Observation Panel for Climate (AOPC) and summarizes results from a recent survey on the existence and availability of long time series. We also provide recommendations for archiving current and future data and examples of climatological studies in which radar data have already been used.}, language = {en} } @article{WisotzkiBeckerChristensenetal.2003, author = {Wisotzki, Lutz and Becker, Thomas and Christensen, Lise Bech and Helms, Andreas and Jahnke, Knud and Kelz, A. and Roth, Martin M. and Sanchez, Sebastian F.}, title = {Integral-field spectrophotometry of the quadruple QSO HE 0435-1223 : Evidence for microlensing}, year = {2003}, abstract = {We present the first spatially resolved spectroscopic observations of the recently discovered quadruple QSO and gravitational lens HE 0435-1223. Using the Potsdam Multi-Aperture Spectrophotometer (PMAS), we show that all four QSO components have very similar but not identical spectra. In particular, the spectral slopes of components A, B, and D are indistinguishable, implying that extinction due to dust plays no major role in the lensing galaxy. While also the emission line profiles are identical within the error bars, as expected from lensing, the equivalent widths show significant differences between components. Most likely, microlensing is responsible for this phenomenon. This is also consistent with the fact that component D, which shows the highest relative continuum level, has brightened by 0.07 mag since Dec. 2001. We find that the emission line flux ratios between the components are in better agreement with simple lens models than broad band or continuum measurements, but that the discrepancies between model and data are still unacceptably large. Finally, we present a detection of the lensing galaxy, although this is close to the limits of the data. Comparing with a model galaxy spectrum, we obtain a redshift estimate of zlens=0.44+/- 0.02.}, language = {en} } @article{WisotzkiBeckerChristensenetal.2004, author = {Wisotzki, Lutz and Becker, Thomas and Christensen, Lise Bech and Jahnke, Knud and Helms, Andreas and Kelz, A. and Roth, Martin M. and Sanchez, Sebastian F.}, title = {Integral field spectrophotometry of gravitationally lensed QSOs with PMAS}, issn = {0004-6337}, year = {2004}, abstract = {We present spatially resolved spectrophotometric observations of multiply imaged QSOs, using the Potsdam Multi- Aperture Spectrophotometer (PMAS), with the intention to search for spectral differences between components indicative of either microlensing or dust extinction. For the quadruple QSO HE 0435-1223 we find that the continuum shapes are indistinguishable, therefore differential extinction is negligible. The equivalent widths of the broad emission lines are however significantly different, and we argue that this is most likely due to microlensing. Contrariwise, the two components of the well-known object UM 673 have virtually identical emission line properties, but the continuum slopes differ significantly and indicate different dust extinction along both lines of sight}, language = {en} } @book{BeckerKuemmelOtt2003, author = {Becker, Matthias and K{\"u}mmel, Egbert and Ott, Andreas}, title = {Wohnungseigentum : Grundlagen, Systematik, Praxis}, publisher = {Schmidt}, address = {K{\"o}ln}, isbn = {3-504-45026-5}, pages = {XXII, 312 S.}, year = {2003}, language = {de} } @article{FangGouldLysyakovaetal.2018, author = {Fang, Liang and Gould, Oliver E. C. and Lysyakova, Liudmila and Jiang, Yi and Sauter, Tilman and Frank, Oliver and Becker, Tino and Schossig, Michael and Kratz, Karl and Lendlein, Andreas}, title = {Implementing and quantifying the shape-memory effect of single polymeric micro/nanowires with an atomic force microscope}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {19}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {16}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201701362}, pages = {2078 -- 2084}, year = {2018}, abstract = {The implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10 +/- 1\% or 21 +/- 1\% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of sigma(max,app)=1.2 +/- 0.1 and 33.3 +/- 0.1MPa were obtained for a single microwire and nanowire, respectively. The universal AFM test platform described here enables the implementation and quantification of a thermomechanically induced function for individual polymeric micro- and nanosystems.}, language = {en} } @article{ChengvandenBerghZengetal.2013, author = {Cheng, Shifeng and van den Bergh, Erik and Zeng, Peng and Zhong, Xiao and Xu, Jiajia and Liu, Xin and Hofberger, Johannes and de Bruijn, Suzanne and Bhide, Amey S. and Kuelahoglu, Canan and Bian, Chao and Chen, Jing and Fan, Guangyi and Kaufmann, Kerstin and Hall, Jocelyn C. and Becker, Annette and Br{\"a}utigam, Andrea and Weber, Andreas P. M. and Shi, Chengcheng and Zheng, Zhijun and Li, Wujiao and Lv, Mingju and Tao, Yimin and Wang, Junyi and Zou, Hongfeng and Quan, Zhiwu and Hibberd, Julian M. and Zhang, Gengyun and Zhu, Xin-Guang and Xu, Xun and Schranz, M. Eric}, title = {The Tarenaya hassleriana Genome Provides insight Into Reproductive Trait and Genome Evolution of Crucifers}, series = {The plant cell}, volume = {25}, journal = {The plant cell}, number = {8}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.113.113480}, pages = {2813 -- 2830}, year = {2013}, abstract = {The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-alpha) that is independent of the Brassicaceae-specific duplication (At-alpha) and nested Brassica (Br-a) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical SERINE RECEPTOR KINASE receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes.}, language = {en} } @article{WulffBuschhueterWestphaletal.2020, author = {Wulff, Peter and Buschh{\"u}ter, David and Westphal, Andrea and Nowak, Anna and Becker, Lisa and Robalino, Hugo and Stede, Manfred and Borowski, Andreas}, title = {Computer-based classification of preservice physics teachers' written reflections}, series = {Journal of science education and technology}, volume = {30}, journal = {Journal of science education and technology}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {1059-0145}, doi = {10.1007/s10956-020-09865-1}, pages = {1 -- 15}, year = {2020}, abstract = {Reflecting in written form on one's teaching enactments has been considered a facilitator for teachers' professional growth in university-based preservice teacher education. Writing a structured reflection can be facilitated through external feedback. However, researchers noted that feedback in preservice teacher education often relies on holistic, rather than more content-based, analytic feedback because educators oftentimes lack resources (e.g., time) to provide more analytic feedback. To overcome this impediment to feedback for written reflection, advances in computer technology can be of use. Hence, this study sought to utilize techniques of natural language processing and machine learning to train a computer-based classifier that classifies preservice physics teachers' written reflections on their teaching enactments in a German university teacher education program. To do so, a reflection model was adapted to physics education. It was then tested to what extent the computer-based classifier could accurately classify the elements of the reflection model in segments of preservice physics teachers' written reflections. Multinomial logistic regression using word count as a predictor was found to yield acceptable average human-computer agreement (F1-score on held-out test dataset of 0.56) so that it might fuel further development towards an automated feedback tool that supplements existing holistic feedback for written reflections with data-based, analytic feedback.}, language = {en} } @article{GraeffZeheSchlaegeretal.2010, author = {Gr{\"a}ff, Thomas and Zehe, Erwin and Schl{\"a}ger, Stefan and Morgner, Markus and Bauer, Andreas and Becker, Rolf and Creutzfeldt, Benjamin and Bronstert, Axel}, title = {A quality assessment of spatial TDR soil moisture measurements in homogenous and heterogeneous media with laboratory experiments}, issn = {1812-2108}, doi = {10.5194/hessd-7-269-2010}, year = {2010}, abstract = {Investigation of transient soil moisture profiles yields valuable information of near- surface processes. A recently developed reconstruction algorithm based on the telegraph equation allows the inverse estimation of soil moisture profiles along coated, three rod TDR probes. Laboratory experiments were carried out to prove the results of the inversion and to understand the influence of probe rod deformation and solid objects close to the probe in heterogonous media. Differences in rod geometry can lead to serious misinterpretations in the soil moisture profile but have small influence on the average soil moisture along the probe. Solids in the integration volume have almost no effect on average soil moisture but result in locally slightly decreased moisture values. Inverted profiles obtained in a loamy soil with a clay content of about 16\% were in good agreement with independent measurements.}, language = {en} } @article{GraeffZeheSchlaegeretal.2010, author = {Gr{\"a}ff, Thomas and Zehe, Erwin and Schlaeger, Stefan and Morgner, Markus and Bauer, Andreas and Becker, Rolf and Creutzfeldt, Benjamin and Bronstert, Axel}, title = {A quality assessment of Spatial TDR soil moisture measurements in homogenous and heterogeneous media with laboratory experiments}, issn = {1027-5606}, doi = {10.5194/hess-14-1007-2010}, year = {2010}, abstract = {Investigation of transient soil moisture profiles yields valuable information of near- surface processes. A recently developed reconstruction algorithm based on the telegraph equation allows the inverse estimation of soil moisture profiles along coated, three rod TDR probes. Laboratory experiments were carried out to prove the results of the inversion and to understand the influence of probe rod deformation and solid objects close to the probe in heterogeneous media. Differences in rod geometry can lead to serious misinterpretations in the soil moisture profile, but have small influence on the average soil moisture along the probe. Solids in the integration volume have almost no effect on average soil moisture, but result in locally slightly decreased moisture values. Inverted profiles obtained in a loamy soil with a clay content of about 16\% were in good agreement with independent measurements.}, language = {en} } @article{TungMaringXuetal.2022, author = {Tung, Wing Tai and Maring, Janita A. and Xu, Xun and Liu, Yue and Becker, Matthias and Somesh, Dipthi Bachamanda and Klose, Kristin and Wang, Weiwei and Sun, Xianlei and Ullah, Imran and Kratz, Karl and Neffe, Axel T. and Stamm, Christof and Ma, Nan and Lendlein, Andreas}, title = {In vivo performance of a cell and factor free multifunctional fiber mesh modulating postinfarct myocardial remodeling}, series = {Advanced Functional Materials}, volume = {32}, journal = {Advanced Functional Materials}, number = {31}, publisher = {Wiley}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.202110179}, pages = {17}, year = {2022}, abstract = {Guidance of postinfarct myocardial remodeling processes by an epicardial patch system may alleviate the consequences of ischemic heart disease. As macrophages are highly relevant in balancing immune response and regenerative processes their suitable instruction would ensure therapeutic success. A polymeric mesh capable of attracting and instructing monocytes by purely physical cues and accelerating implant degradation at the cell/implant interface is designed. In a murine model for myocardial infarction the meshes are compared to those either coated with extracellular matrix or loaded with induced cardiomyocyte progenitor cells. All implants promote macrophage infiltration and polarization in the epicardium, which is verified by in vitro experiments. 6 weeks post-MI, especially the implantation of the mesh attenuates left ventricular adverse remodeling processes as shown by reduced infarct size (14.7\% vs 28-32\%) and increased wall thickness (854 mu m vs 400-600 mu m), enhanced angiogenesis/arteriogenesis (more than 50\% increase compared to controls and other groups), and improved heart function (ejection fraction = 36.8\% compared to 12.7-31.3\%). Upscaling as well as process controls is comprehensively considered in the presented mesh fabrication scheme to warrant further progression from bench to bedside.}, language = {en} }