@article{HerzschuhLiBoehmeretal.2022, author = {Herzschuh, Ulrike and Li, Chenzhi and Boehmer, Thomas and Postl, Alexander K. and Heim, Birgit and Andreev, Andrei A. and Cao, Xianyong and Wieczorek, Mareike and Ni, Jian}, title = {LegacyPollen 1.0}, series = {Earth system science data : ESSD}, volume = {14}, journal = {Earth system science data : ESSD}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-14-3213-2022}, pages = {3213 -- 3227}, year = {2022}, abstract = {Here we describe the LegacyPollen 1.0, a dataset of 2831 fossil pollen records with metadata, a harmonized taxonomy, and standardized chronologies. A total of 1032 records originate from North America, 1075 from Europe, 488 from Asia, 150 from Latin America, 54 from Africa, and 32 from the Indo-Pacific. The pollen data cover the late Quaternary (mostly the Holocene). The original 10 110 pollen taxa names (including variations in the notations) were harmonized to 1002 terrestrial taxa (including Cyperaceae), with woody taxa and major herbaceous taxa harmonized to genus level and other herbaceous taxa to family level. The dataset is valuable for synthesis studies of, for example, taxa areal changes, vegetation dynamics, human impacts (e.g., deforestation), and climate change at global or continental scales. The harmonized pollen and metadata as well as the harmonization table are available from PANGAEA (https://doi.org/10.1594/PANGAEA.929773; Herzschuh et al., 2021). R code for the harmonization is provided at Zenodo (https://doi.org/10.5281/zenodo.5910972; Herzschuh et al., 2022) so that datasets at a customized harmonization level can be easily established.}, language = {en} } @article{LaiLuoZwirneretal.2022, author = {Lai, Huagui and Luo, Jincheng and Zwirner, Yannick and Olthof, Selina and Wieczorek, Alexander and Ye, Fangyuan and Jeangros, Quentin and Yin, Xinxing and Akhundova, Fatima and Ma, Tianshu and He, Rui and Kothandaraman, Radha K. and Chin, Xinyu and Gilshtein, Evgeniia and Muller, Andre and Wang, Changlei and Thiesbrummel, Jarla and Siol, Sebastian and Prieto, Jose Marquez and Unold, Thomas and Stolterfoht, Martin and Chen, Cong and Tiwari, Ayodhya N. and Zhao, Dewei and Fu, Fan}, title = {High-performance flexible all-Perovskite tandem solar cells with reduced V-OC-deficit in wide-bandgap subcell}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {45}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202202438}, pages = {12}, year = {2022}, abstract = {Among various types of perovskite-based tandem solar cells (TSCs), all-perovskite TSCs are of particular attractiveness for building- and vehicle-integrated photovoltaics, or space energy areas as they can be fabricated on flexible and lightweight substrates with a very high power-to-weight ratio. However, the efficiency of flexible all-perovskite tandems is lagging far behind their rigid counterparts primarily due to the challenges in developing efficient wide-bandgap (WBG) perovskite solar cells on the flexible substrates as well as their low open-circuit voltage (V-OC). Here, it is reported that the use of self-assembled monolayers as hole-selective contact effectively suppresses the interfacial recombination and allows the subsequent uniform growth of a 1.77 eV WBG perovskite with superior optoelectronic quality. In addition, a postdeposition treatment with 2-thiopheneethylammonium chloride is employed to further suppress the bulk and interfacial recombination, boosting the V-OC of the WBG top cell to 1.29 V. Based on this, the first proof-of-concept four-terminal all-perovskite flexible TSC with a power conversion efficiency of 22.6\% is presented. When integrating into two-terminal flexible tandems, 23.8\% flexible all-perovskite TSCs with a superior V-OC of 2.1 V is achieved, which is on par with the V-OC reported on the 28\% all-perovskite tandems grown on the rigid substrate.}, language = {en} }