@phdthesis{Konrad2022, author = {Konrad, Alexander}, title = {Umdeutungen des Islams}, series = {Geschichte der Gegenwart ; 31}, journal = {Geschichte der Gegenwart ; 31}, publisher = {Wallstein}, address = {G{\"o}ttingen}, isbn = {978-3-8353-5268-1}, pages = {495}, year = {2022}, abstract = {Fanatismus, Krieg und Terror - {\"o}ffentliche Deutungen und Stereotype {\"u}ber Muslim*innen in der Bundesrepublik. Ein großer Teil der deutschen Bev{\"o}lkerung hat heutzutage eine negative Wahrnehmung von Muslim*innen. Ihnen wird pauschal ein Hang zu Gewalt, religi{\"o}sem Fanatismus, Extremismus und Unterdr{\"u}ckung von Frauen unterstellt. Diese Zuschreibungen bestehen nicht erst seit den Terroranschl{\"a}gen vom 11. September 2001, sondern haben sich bereits in den drei Jahrzehnten zuvor etabliert. Alexander Konrad untersucht den Wandel der bundesdeutschen Wahrnehmungen von Muslim*innen von den Siebzigerjahren bis zur Jahrtausendwende. Dabei nimmt er {\"o}ffentliche Aussagen und Handlungen von Akteur*innen aus Politik, Medien, Wissenschaft, Religionsgemeinschaften und Zivilgesellschaft kritisch in den Blick. Hintergr{\"u}nde, argumentative {\"U}berschneidungen und Agenden stehen im Zentrum seiner Analyse. Auch den damaligen Bem{\"u}hungen um reflektierte Sichtweisen zu Muslim*innen sp{\"u}rt der Autor nach. Mit seiner Studie leistet Alexander Konrad einen fundamentalen Beitrag zur zeithistorischen Dekonstruktion von Denkweisen {\"u}ber Islam und Muslim*innen.}, language = {de} } @article{TanLiuSiemensmeyeretal.2018, author = {Tan, Li and Liu, Bing and Siemensmeyer, Konrad and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Synthesis of thermo-responsive nanocomposites of superparamagnetic cobalt nanoparticlesipoly(N-isopropylacrylamide)}, series = {Journal of colloid and interface science}, volume = {526}, journal = {Journal of colloid and interface science}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9797}, doi = {10.1016/j.jcis.2018.04.074}, pages = {124 -- 134}, year = {2018}, abstract = {Novel nanocomposites of superparamagnetic cobalt nanoparticles (Co NPs) and poly(N-isopropylacrylamide) (PNIPAM) were fabricated through surface-initiated atom-transfer radical polymerization (SI-ATRP). We firstly synthesized a functional ATRP initiator, containing an amine (as anchoring group) and a 2-bromopropionate group (SI-ATRP initiator). Oleic acid- and trioctylphosphine oxide-coated Co NPs were then modified with the initiator via ligand exchange. The process is facile and rapid for efficient surface functionalization and afterwards the Co NPs can be dispersed into polar solvent DMF without aggregation. Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and dynamic light scattering measurements confirmed the success of ligand exchange. The following polymerization of NIPAM was conducted on the surface of Co NPs. Temperature-dependent dynamic light scattering study showed the responsive behavior of PNIPAM-coated Co NPs. The combination of superparamagnetic and thermo-responsive properties in these hybrid nanoparticles is promising for future applications e.g. in biomedicine. (C) 2018 Elsevier Inc. All rights reserved.}, language = {en} } @article{TanLiuSiemensmeyeretal.2018, author = {Tan, Li and Liu, Bing and Siemensmeyer, Konrad and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Synthesis of Polystyrene-Coated Superparamagnetic and Ferromagnetic Cobalt Nanoparticles}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym10101053}, pages = {18}, year = {2018}, abstract = {Polystyrene-coated cobalt nanoparticles (NPs) were synthesized through a dual-stage thermolysis of cobalt carbonyl (Co-2(CO)(8)). The amine end-functionalized polystyrene surfactants with varying molecular weight were prepared via atom-transfer radical polymerization technique. By changing the concentration of these polymeric surfactants, Co NPs with different size, size distribution, and magnetic properties were obtained. Transmission electron microscopy characterization showed that the size of Co NPs stabilized with lower molecular weight polystyrene surfactants (M-n = 2300 g/mol) varied from 12-22 nm, while the size of Co NPs coated with polystyrene of middle (M-n = 4500 g/mol) and higher molecular weight (M-n = 10,500 g/mol) showed little change around 20 nm. Magnetic measurements revealed that the small cobalt particles were superparamagnetic, while larger particles were ferromagnetic and self-assembled into 1-D chain structures. Thermogravimetric analysis revealed that the grafting density of polystyrene with lower molecular weight is high. To the best of our knowledge, this is the first study to obtain both superparamagnetic and ferromagnetic Co NPs by changing the molecular weight and concentration of polystyrene through the dual-stage decomposition method.}, language = {en} } @misc{AnnemarieWeissSchierletal.2020, author = {Annemarie, Amb{\"u}hl and Weiss, Irene M. and Schierl, Petra and Schmitzer, Ulrich and Kirichenko, Alexander and Heinemann, Matthias and Weiß, Adrian and Esposito, Paolo and Grewing, Farouk F. and Merli, Elena and Feichtinger, Barbara and Seng, Helmut and Wieber, Anja and Schollmeyer, Patrick and Kranzdorf, Anna and Werner, Eva and W{\"o}hrle, Georg and Brinker, Wolfram and Di Rocco, Emilia and Wesselmann, Katharina and L{\"o}bcke, Konrad and Benedetti, Ginevra}, title = {tessellae - Birthday Issue for Christine Walde}, series = {thersites}, volume = {2020}, journal = {thersites}, number = {11}, editor = {Amb{\"u}hl, Annemarie}, issn = {2364-7612}, doi = {10.34679/thersites.vol11}, year = {2020}, abstract = {This special birthday issue for Christine Walde, co-founder and co-editor of thersites, features contributions from colleagues and friends. The articles, essays, and book reviews, centering around the honoranda's research interests as well as focusing on core topics of thersites, form a thematically varied mosaic (tessellae): innovative constructions of literary genres and poetics (especially bucolic, elegy, epic, and epigram), images of the city of Rome and its counterparts, sleep and dreams, history of classical scholarship, gender studies, and classical reception studies.}, language = {en} } @article{SchwopePiresKurpasetal.2022, author = {Schwope, Axel and Pires, Adriana M. and Kurpas, Jan and Doroshenko, Victor and Suleimanov, Valery F. and Freyberg, Michael and Becker, Werner and Dennerl, Konrad and Haberl, Frank and Lamer, Georg and Maitra, Chandreyee and Potekhin, Alexander Y. and Ramos-Ceja, Miriam E. and Santangelo, Andrea and Traulsen, Iris and Werner, Klaus}, title = {Phase-resolved X-ray spectroscopy of PSR B0656+14 with SRG/eROSITA and XMM-Newton}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {661}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202141105}, pages = {21}, year = {2022}, abstract = {We present a detailed spectroscopic and timing analysis of X-ray observations of the bright pulsar PSR B0656+14. The observations were obtained simultaneously with eROSITA and XMM-Newton during the calibration and performance verification phase of the Spektrum-Roentgen-Gamma mission (SRG). The analysis of the 100 ks deep observation of eROSITA is supported by archival observations of the source, including XMM-Newton, NuSTAR, and NICER. Using XMM-Newton and NICER, we first established an X-ray ephemeris for the time interval 2015 to 2020, which connects all X-ray observations in this period without cycle count alias and phase shifts. The mean eROSITA spectrum clearly reveals an absorption feature originating from the star at 570 eV with a Gaussian sigma of about 70 eV that was tentatively identified in a previous long XMM-Newton observation. A second previously discussed absorption feature occurs at 260-265 eV and is described here as an absorption edge. It could be of atmospheric or of instrumental origin. These absorption features are superposed on various emission components that are phenomenologically described here as the sum of hot (120 eV) and cold (65 eV) blackbody components, both of photospheric origin, and a power law with photon index Gamma = 2 from the magnetosphere. We created energy-dependent light curves and phase-resolved spectra with a high signal-to-noise ratio. The phase-resolved spectroscopy reveals that the Gaussian absorption line at 570 eV is clearly present throughout similar to 60\% of the spin cycle, but it is otherwise undetected. Likewise, its parameters were found to be dependent on phase. The visibility of the line strength coincides in phase with the maximum flux of the hot blackbody. If the line originates from the stellar surface, it nevertheless likely originates from a different location than the hot polar cap. We also present three families of model atmospheres: a magnetized atmosphere, a condensed surface, and a mixed model. They were applied to the mean observed spectrum, whose continuum fit the observed data well. The atmosphere model, however, predicts distances that are too short. For the mixed model, the Gaussian absorption may be interpreted as proton cyclotron absorption in a field as high as 10(14) G, which is significantly higher than the field derived from the moderate observed spin-down.}, language = {en} }