@article{AlawashraPohl2022, author = {Alawashra, Mahmoud and Pohl, Martin}, title = {Suppression of the TeV Pair-beam-Plasma Instability by a Tangled Weak Intergalactic Magnetic Field}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {929}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac5a4b}, pages = {8}, year = {2022}, abstract = {We study the effect of a tangled sub-fG level intergalactic magnetic field (IGMF) on the electrostatic instability of a blazar-induced pair beam. Sufficiently strong IGMF may significantly deflect the TeV pair beams, which would reduce the flux of secondary cascade emission below the observational limits. A similar flux reduction may result from the electrostatic beam-plasma instability, which operates the best in the absence of IGMF. Considering IGMF with correlation lengths smaller than a kiloparsec, we find that weak magnetic fields increase the transverse momentum of the pair-beam particles, which dramatically reduces the linear growth rate of the electrostatic instability and hence the energy-loss rate of the pair beam. We show that the beam-plasma instability is eliminated as an effective energy-loss agent at a field strength three orders of magnitude below that needed to suppress the secondary cascade emission by magnetic deflection. For intermediate-strength IGMF, we do not know a viable process to explain the observed absence of GeV-scale cascade emission.}, language = {en} } @phdthesis{Alawashra2024, author = {Alawashra, Mahmoud}, title = {Plasma instabilities of TeV pair beams induced by blazars}, doi = {10.25932/publishup-63013}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-630131}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 130}, year = {2024}, abstract = {Relativistic pair beams produced in the cosmic voids by TeV gamma rays from blazars are expected to produce a detectable GeV-scale cascade emission missing in the observations. The suppression of this secondary cascade implies either the deflection of the pair beam by intergalactic magnetic fields (IGMFs) or an energy loss of the beam due to the electrostatic beam-plasma instability. IGMF of femto-Gauss strength is sufficient to significantly deflect the pair beams reducing the flux of secondary cascade below the observational limits. A similar flux reduction may result in the absence of the IGMF from the beam energy loss by the instability before the inverse Compton cooling. This dissertation consists of two studies about the instability role in the evolution of blazar-induced beams. Firstly, we investigated the effect of sub-fG level IGMF on the beam energy loss by the instability. Considering IGMF with correlation lengths smaller than a few kpc, we found that such fields increase the transverse momentum of the pair beam particles, dramatically reducing the linear growth rate of the electrostatic instability and hence the energy-loss rate of the pair beam. Our results show that the IGMF eliminates beam plasma instability as an effective energy-loss agent at a field strength three orders of magnitude below that needed to suppress the secondary cascade emission by magnetic deflection. For intermediate-strength IGMF, we do not know a viable process to explain the observed absence of GeV-scale cascade emission and hence can be excluded. Secondly, we probed how the beam-plasma instability feeds back on the beam, using a realistic two-dimensional beam distribution. We found that the instability broadens the beam opening angles significantly without any significant energy loss, thus confirming a recent feedback study on a simplified one-dimensional beam distribution. However, narrowing diffusion feedback of the beam particles with Lorentz factors less than 1e6 might become relevant even though initially it is negligible. Finally, when considering the continuous creation of TeV pairs, we found that the beam distribution and the wave spectrum reach a new quasi-steady state, in which the scattering of beam particles persists and the beam opening angle may increase by a factor of hundreds. This new intrinsic scattering of the cascade can result in time delays of around ten years, thus potentially mimicking the IGMF deflection. Understanding the implications on the GeV cascade emission requires accounting for inverse Compton cooling and simulating the beam-plasma system at different points in the IGM.}, language = {en} }