@article{FargierBuerkiFoschiniPinetetal.2017, author = {Fargier, Raphael and B{\"u}rki-Foschini, Audrey Damaris and Pinet, Svetlana and Alario, F. -Xavier and Laganaro, Marina}, title = {Word onset phonetic properties and motor artifacts in speech production EEG recordings}, series = {Psychophysiology : journal of the Society for Psychophysiological Research}, volume = {55}, journal = {Psychophysiology : journal of the Society for Psychophysiological Research}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0048-5772}, doi = {10.1111/psyp.12982}, pages = {10}, year = {2017}, abstract = {Electrophysiological research using verbal response paradigms faces the problem of muscle artifacts that occur during speech production or in the period preceding articulation. In this context, this paper has two related aims. The first is to show how the nature of the first phoneme influences the alignment of the ERPs. The second is to further characterize the EEG signal around the onset of articulation, both in temporal and frequency domains. Participants were asked to name aloud pictures of common objects. We applied microstate analyses and time-frequency transformations of ERPs locked to vocal onset to compare the EEG signal between voiced and unvoiced labial plosive word onset consonants. We found a delay of about 40 ms in the set of stable topographic patterns for /b/ relative to /p/ onset words. A similar shift was observed in the power increase of gamma oscillations (30-50 Hz), which had an earlier onset for /p/ trials (similar to 150 ms before vocal onset). This 40-ms shift is consistent with the length of the voiced proportion of the acoustic signal prior to the release of the closure in the vocal responses. These results demonstrate that phonetic features are an important parameter affecting response-locked ERPs, and hence that the onset of the acoustic energy may not be an optimal trigger for synchronizing the EEG activity to the response in vocal paradigms. The indexes explored in this study provide a step forward in the characterization of muscle-related artifacts in electrophysiological studies of speech and language production.}, language = {en} } @article{BuerkiAlarioVasishth2022, author = {B{\"u}rki, Audrey and Alario, F-Xavier and Vasishth, Shravan}, title = {When words collide: Bayesian meta-analyses of distractor and target properties in the picture-word interference paradigm}, series = {Quarterly Journal of Experimental Psychology}, volume = {76}, journal = {Quarterly Journal of Experimental Psychology}, number = {6}, publisher = {Sage Publications}, address = {London}, issn = {1747-0218}, doi = {10.1177/17470218221114644}, pages = {1410 -- 1430}, year = {2022}, abstract = {In the picture-word interference paradigm, participants name pictures while ignoring a written or spoken distractor word. Naming times to the pictures are slowed down by the presence of the distractor word. The present study investigates in detail the impact of distractor and target word properties on picture naming times, building on the seminal study by Miozzo and Caramazza. We report the results of several Bayesian meta-analyses based on 26 datasets. These analyses provide estimates of effect sizes and their precision for several variables and their interactions. They show the reliability of the distractor frequency effect on picture naming latencies (latencies decrease as the frequency of the distractor increases) and demonstrate for the first time the impact of distractor length, with longer naming latencies for trials with longer distractors. Moreover, distractor frequency interacts with target word frequency to predict picture naming latencies. The methodological and theoretical implications of these findings are discussed.}, language = {en} }