@article{SebagGarcinAdatteetal.2018, author = {Sebag, David and Garcin, Yannick and Adatte, Thierry and Deschamps, Pierre and Menot, Guillemette and Verrecchia, Eric P.}, title = {Correction for the siderite effect on Rock-Eval parameters}, series = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, volume = {123}, journal = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0146-6380}, doi = {10.1016/j.orggeochem.2018.05.010}, pages = {126 -- 135}, year = {2018}, abstract = {Originally developed for use in the petroleum industry, Rock-Eval pyrolysis is a technique commonly applied to lake sediments to infer paleoenvironmental reconstructions. The standard Rock-Eval parameters provide information on the amount of total organic and inorganic carbon (TOC and MinC, respectively), and are usually interpreted as proxies for the source (aquatic or terrestrial) of the primary production of organic matter (Hydrogen Index vs Oxygen Index). Although this method usually provides valuable evidence, the common presence of siderite in tropical lake sediments can alter the primary signal of the sedimentary organic matter (SOM). Indeed, the CO2 and CO released by the pyrolysis of siderite are integral to the calculation of the SOM-related standard Rock-Eval parameters. In this study, we analyze sediments from a core collected in the Lake Barombi (southwest Cameroon) and describe the impact of siderite on standard Rock-Eval parameters. We propose a workflow that allows standard Rock-Eval parameters to be corrected, based on the analysis of thermograms. The proposed corrections provide siderite-effect-free parameters, accurately reflecting the changes in sedimentary organic matter composition. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @article{JohnAdatteMutti2006, author = {John, Cedric Michael and Adatte, Thierry and Mutti, Maria}, title = {Regional trends in clay mineral fluxes to the Queensland margin and ties to middle Miocene global cooling}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2005.09.010}, year = {2006}, abstract = {Three ODP sites located on the Marion Plateau, Northeast Australian margin, were investigated for clay mineral and bulk mineralogy changes through the early to middle Miocene. Kaolinite to smectite (K/S) ratios, as well as mass accumulation rates of clays, point to a marked decrease in accumulation of smectite associated with an increase in accumulation of kaolinite starting at similar to 15.6 Ma, followed by a, second increase in accumulation of kaolinite at similar to 13.2 Ma. Both of these increases are correlative to an increase in the calcite to detritus ratio. Comparison of our record with published precipitation proxies from continental Queensland indicates that increases in kaolinite did not correspond to more intense tropical-humid conditions, but instead to periods of greater aridity. Three mechanisms are explored to explain the temporal trends in clad, on the Marion Plateau: sea-level changes, changes in oceanic currents, and denudation of the Australian continent followed by reworking and eolian transport of clays. Though low mass accumulation rates of kaolinite are compatible with a possible contribution of eolian material after 14 Ma, when Australia became more arid, the lateral distribution of kaolinite along slope indicates mainly fluvial input for all clays and thus rules out this mechanism as well as oceanic current transport as the main controls behind clay accumulation on the plateau. We propose a model explaining the good correlation between long-term sea-level fall, decrease in smectite accumulation, increase in kaolinite accumulation and increase in carbonate input to the distal slope locations. We hypothesize that during low sea level and thus periods of drier continental climate in Queensland, early Miocene kaolinite-rich lacustrine deposits were being reworked, and that the progradation of the heterozoan carbonate platforms towards the basin center favored input of carbonate to the distal slope sites. The major find of our study is that increase kaolinite fluxes on the Queensland margin during the early and middle Miocene did not reflect the establishment of a tropical climate, and this stresses that care must be taken when reconstructing Australian climate based on deep-sea clay records alone.}, language = {en} }