@unpublished{AcharyaActisAghajanietal.2013, author = {Acharya, B. S. and Actis, M. and Aghajani, T. and Agnetta, G. and Aguilar, J. and Aharonian, Felix A. and Ajello, M. and Akhperjanian, A. G. and Alcubierre, M. and Aleksic, J. and Alfaro, R. and Aliu, E. and Allafort, A. J. and Allan, D. and Allekotte, I. and Amato, E. and Anderson, J. and Ang{\"u}ner, Ekrem Oǧuzhan and Antonelli, L. A. and Antoranz, P. and Aravantinos, A. and Arlen, T. and Armstrong, T. and Arnaldi, H. and Arrabito, L. and Asano, K. and Ashton, T. and Asorey, H. G. and Awane, Y. and Baba, H. and Babic, A. and Baby, N. and Baehr, J. and Bais, A. and Baixeras, C. and Bajtlik, S. and Balbo, M. and Balis, D. and Balkowski, C. and Bamba, A. and Bandiera, R. and Barber, A. and Barbier, C. and Barcelo, M. and Barnacka, Anna and Barnstedt, J{\"u}rgen and Barres de Almeida, U. and Barrio, J. A. and Basili, A. and Basso, S. and Bastieri, D. and Bauer, C. and Baushev, Anton N. and Becerra Gonzalez, J. and Becherini, Yvonne and Bechtol, K. C. and Tjus, J. Becker and Beckmann, Volker and Bednarek, W. and Behera, B. and Belluso, M. and Benbow, W. and Berdugo, J. and Berger, K. and Bernard, F. and Bernardino, T. and Bernl{\"o}hr, K. and Bhat, N. and Bhattacharyya, S. and Bigongiari, C. and Biland, A. and Billotta, S. and Bird, T. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Bitossi, M. and Blake, S. and Blanch Bigas, O. and Blasi, P. and Bobkov, A. A. and Boccone, V. and Boettcher, Markus and Bogacz, L. and Bogart, J. and Bogdan, M. and Boisson, Catherine and Boix Gargallo, J. and Bolmont, J. and Bonanno, G. and Bonardi, A. and Bonev, T. and Bonifacio, P. and Bonnoli, G. and Bordas, Pol and Borgland, A. W. and Borkowski, Janett and Bose, R. and Botner, O. and Bottani, A. and Bouchet, L. and Bourgeat, M. and Boutonnet, C. and Bouvier, A. and Brau-Nogue, S. and Braun, I. and Bretz, T. and Briggs, M. S. and Bringmann, T. and Brook, P. and Brun, Pierre and Brunetti, L. and Buanes, T. and Buckley, J. H. and Buehler, R. and Bugaev, V. and Bulgarelli, A. and Bulik, Tomasz and Busetto, G. and Buson, S. and Byrum, K. and Cailles, M. and Cameron, R. A. and Camprecios, J. and Canestrari, R. and Cantu, S. and Capalbi, M. and Caraveo, P. A. and Carmona, E. and Carosi, A. and Carr, John and Carton, P. H. and Casanova, Sabrina and Casiraghi, M. and Catalano, O. and Cavazzani, S. and Cazaux, S. and Cerruti, M. and Chabanne, E. and Chadwick, Paula M. and Champion, C. and Chen, Andrew and Chiang, J. and Chiappetti, L. and Chikawa, M. and Chitnis, V. R. and Chollet, F. and Chudoba, J. and Cieslar, M. and Cillis, A. N. and Cohen-Tanugi, J. and Colafrancesco, Sergio and Colin, P. and Calome, J. and Colonges, S. and Compin, M. and Conconi, P. and Conforti, V. and Connaughton, V. and Conrad, Jan and Contreras, J. L. and Coppi, P. and Corona, P. and Corti, D. and Cortina, J. and Cossio, L. and Costantini, H. and Cotter, G. and Courty, B. and Couturier, S. and Covino, S. and Crimi, G. and Criswell, S. J. and Croston, J. and Cusumano, G. and Dafonseca, M. and Dale, O. and Daniel, M. and Darling, J. and Davids, I. and Dazzi, F. and De Angelis, A. and De Caprio, V. and De Frondat, F. and de Gouveia Dal Pino, E. M. and de la Calle, I. and De La Vega, G. A. and Lopez, R. de los Reyes and De Lotto, B. and De Luca, A. and de Mello Neto, J. R. T. and de Naurois, M. and de Oliveira, Y. and de Ona Wilhelmi, E. and de Souza, V. and Decerprit, G. and Decock, G. and Deil, C. and Delagnes, E. and Deleglise, G. and Delgado, C. and Della Volpe, D. and Demange, P. and Depaola, G. and Dettlaff, A. and Di Paola, A. and Di Pierro, F. and Diaz, C. and Dick, J. and Dickherber, R. and Dickinson, H. and Diez-Blanco, V. and Digel, S. and Dimitrov, D. and Disset, G. and Djannati-Ata{\"i}, A. and Doert, M. and Dohmke, M. and Domainko, W. and Prester, Dijana Dominis and Donat, A. and Dorner, D. and Doro, M. and Dournaux, J-L. and Drake, G. and Dravins, D. and Drury, L. and Dubois, F. and Dubois, R. and Dubus, G. and Dufour, C. and Dumas, D. and Dumm, J. and Durand, D. and Dyks, J. and Dyrda, M. and Ebr, J. and Edy, E. and Egberts, Kathrin and Eger, P. and Einecke, S. and Eleftheriadis, C. and Elles, S. and Emmanoulopoulos, D. and Engelhaupt, D. and Enomoto, R. and Ernenwein, J-P and Errando, M. and Etchegoyen, A. and Evans, P. and Falcone, A. and Fantinel, D. and Farakos, K. and Farnier, C. and Fasola, G. and Favill, B. and Fede, E. and Federici, S. and Fegan, S. and Feinstein, F. and Ferenc, D. and Ferrando, P. and Fesquet, M. and Fiasson, A. and Fillin-Martino, E. and Fink, D. and Finley, C. and Finley, J. P. and Fiorini, M. and Firpo Curcoll, R. and Flores, H. and Florin, D. and Focke, W. and Foehr, C. and Fokitis, E. and Font, L. and Fontaine, G. and Fornasa, M. and Foerster, A. and Fortson, L. and Fouque, N. and Franckowiak, A. and Fransson, C. and Fraser, G. and Frei, R. and Albuquerque, I. F. M. and Fresnillo, L. and Fruck, C. and Fujita, Y. and Fukazawa, Y. and Fukui, Y. and Funk, S. and Gaebele, W. and Gabici, S. and Gabriele, R. and Gadola, A. and Galante, N. and Gall, D. and Gallant, Y. and Gamez-Garcia, J. and Garcia, B. and Garcia Lopez, R. and Gardiol, D. and Garrido, D. and Garrido, L. and Gascon, D. and Gaug, M. and Gaweda, J. and Gebremedhin, L. and Geffroy, N. and Gerard, L. and Ghedina, A. and Ghigo, M. and Giannakaki, E. and Gianotti, F. and Giarrusso, S. and Giavitto, G. and Giebels, B. and Gika, V. and Giommi, P. and Girard, N. and Giro, E. and Giuliani, A. and Glanzman, T. and Glicenstein, J. -F. and Godinovic, N. and Golev, V. and Gomez Berisso, M. and Gomez-Ortega, J. and Gonzalez, M. M. and Gonzalez, A. and Gonzalez, F. and Gonzalez Munoz, A. and Gothe, K. S. and Gougerot, M. and Graciani, R. and Grandi, P. and Granena, F. and Granot, J. and Grasseau, G. and Gredig, R. and Green, A. and Greenshaw, T. and Gregoire, T. and Grimm, O. and Grube, J. and Grudzinska, M. and Gruev, V. and Gruenewald, S. and Grygorczuk, J. and Guarino, V. and Gunji, S. and Gyuk, G. and Hadasch, D. and Hagiwara, R. and Hahn, J. and Hakansson, N. and Hallgren, A. and Hamer Heras, N. and Hara, S. and Hardcastle, M. J. and Harris, J. and Hassan, T. and Hatanaka, K. and Haubold, T. and Haupt, A. and Hayakawa, T. and Hayashida, M. and Heller, R. and Henault, F. and Henri, G. and Hermann, G. and Hermel, R. and Herrero, A. and Hidaka, N. and Hinton, J. and Hoffmann, D. and Hofmann, W. and Hofverberg, P. and Holder, J. and Horns, D. and Horville, D. and Houles, J. and Hrabovsky, M. and Hrupec, D. and Huan, H. and Huber, B. and Huet, J. -M. and Hughes, G. and Humensky, T. B. and Huovelin, J. and Ibarra, A. and Illa, J. M. and Impiombato, D. and Incorvaia, S. and Inoue, S. and Inoue, Y. and Ioka, K. and Ismailova, E. and Jablonski, C. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jean, P. and Jeanney, C. and Jimenez, J. J. and Jogler, T. and Johnson, T. and Journet, L. and Juffroy, C. and Jung, I. and Kaaret, P. and Kabuki, S. and Kagaya, M. and Kakuwa, J. and Kalkuhl, C. and Kankanyan, R. and Karastergiou, A. and Kaercher, K. and Karczewski, M. and Karkar, S. and Kasperek, Aci. and Kastana, D. and Katagiri, H. and Kataoka, J. and Katarzynski, K. and Katz, U. and Kawanaka, N. and Kellner-Leidel, B. and Kelly, H. and Kendziorra, E. and Khelifi, B. and Kieda, D. B. and Kifune, T. and Kihm, T. and Kishimoto, T. and Kitamoto, K. and Kluzniak, W. and Knapic, C. and Knapp, J. w and Knoedlseder, J. and Koeck, F. and Kocot, J. and Kodani, K. and Koehne, J. -H. and Kohri, K. and Kokkotas, K. and Kolitzus, D. and Komin, N. and Kominis, I. and Konno, Y. and Koeppel, H. and Korohoda, P. and Kosack, K. and Koss, G. and Kossakowski, R. and Kostka, P. and Koul, R. and Kowal, G. and Koyama, S. and Koziol, J. and Kraehenbuehl, T. and Krause, J. and Krawzcynski, H. and Krennrich, F. and Krepps, A. and Kretzschmann, A. and Krobot, R. and Krueger, P. and Kubo, H. and Kudryavtsev, V. A. and Kushida, J. and Kuznetsov, A. and La Barbera, A. and La Palombara, N. and La Parola, V. and La Rosa, G. and Lacombe, K. and Lamanna, G. and Lande, J. and Languignon, D. and Lapington, J. and Laporte, P. and Lavalley, C. and Le Flour, T. and Le Padellec, A. and Lee, S. -H. and Lee, W. H. and Leigui de Oliveira, M. A. and Lelas, D. and Lenain, J. -P. and Leopold, D. J. and Lerch, T. and Lessio, L. and Lieunard, B. and Lindfors, E. and Liolios, A. and Lipniacka, A. and Lockart, H. and Lohse, T. and Lombardi, S. and Lopatin, A. and Lopez, M. and Lopez-Coto, R. and Lopez-Oramas, A. and Lorca, A. and Lorenz, E. and Lubinski, P. and Lucarelli, F. and Luedecke, H. and Ludwin, J. and Luque-Escamilla, P. L. and Lustermann, W. and Luz, O. and Lyard, E. and Maccarone, M. C. and Maccarone, T. J. and Madejski, G. M. and Madhavan, A. and Mahabir, M. and Maier, G. and Majumdar, P. and Malaguti, G. and Maltezos, S. and Manalaysay, A. and Mancilla, A. and Mandat, D. and Maneva, G. and Mangano, A. and Manigot, P. and Mannheim, K. and Manthos, I. and Maragos, N. and Marcowith, A. and Mariotti, M. and Marisaldi, M. and Markoff, S. and Marszalek, A. and Martens, C. and Marti, J. and Martin, J-M. and Martin, P. and Martinez, G. and Martinez, F. and Martinez, M. and Masserot, A. and Mastichiadis, A. and Mathieu, A. and Matsumoto, H. and Mattana, F. and Mattiazzo, S. and Maurin, G. and Maxfield, S. and Maya, J. and Mazin, D. and Mc Comb, L. and McCubbin, N. and McHardy, I. and McKay, R. and Medina, C. and Melioli, C. and Melkumyan, D. and Mereghetti, S. and Mertsch, P. and Meucci, M. and Michalowski, J. and Micolon, P. and Mihailidis, A. and Mineo, T. and Minuti, M. and Mirabal, N. and Mirabel, F. and Miranda, J. M. and Mirzoyan, R. and Mizuno, T. and Moal, B. and Moderski, R. and Mognet, I. and Molinari, E. and Molinaro, M. and Montaruli, T. and Monteiro, I. and Moore, P. and Moralejo Olaizola, A. and Mordalska, M. and Morello, C. and Mori, K. and Mottez, F. and Moudden, Y. and Moulin, E. and Mrusek, I. and Mukherjee, R. and Munar-Adrover, P. and Muraishi, H. and Murase, K. and Murphy, A. and Nagataki, S. and Naito, T. and Nakajima, D. and Nakamori, T. and Nakayama, K. and Naumann, C. L. and Naumann, D. and Naumann-Godo, M. and Nayman, P. and Nedbal, D. and Neise, D. and Nellen, L. and Neustroev, V. and Neyroud, N. and Nicastro, L. and Nicolau-Kuklinski, J. and Niedzwiecki, A. and Niemiec, J. and Nieto, D. and Nikolaidis, A. and Nishijima, K. and Nolan, S. and Northrop, R. and Nosek, D. and Nowak, N. and Nozato, A. and O'Brien, P. and Ohira, Y. and Ohishi, M. and Ohm, S. and Ohoka, H. and Okuda, T. and Okumura, A. and Olive, J. -F. and Ong, R. A. and Orito, R. and Orr, M. and Osborne, J. and Ostrowski, M. and Otero, L. A. and Otte, N. and Ovcharov, E. and Oya, I. and Ozieblo, A. and Padilla, L. and Paiano, S. and Paillot, D. and Paizis, A. and Palanque, S. and Palatka, M. and Pallota, J. and Panagiotidis, K. and Panazol, J. -L. and Paneque, D. and Panter, M. and Paoletti, R. and Papayannis, Alexandros and Papyan, G. and Paredes, J. M. and Pareschi, G. and Parks, G. and Parraud, J. -M. and Parsons, D. and Arribas, M. Paz and Pech, M. and Pedaletti, G. and Pelassa, V. and Pelat, D. and Perez, M. D. C. and Persic, M. and Petrucci, P-O and Peyaud, B. and Pichel, A. and Pita, S. and Pizzolato, F. and Platos, L. and Platzer, R. and Pogosyan, L. and Pohl, M. and Pojmanski, G. and Ponz, J. D. and Potter, W. and Poutanen, J. and Prandini, E. and Prast, J. and Preece, R. and Profeti, F. and Prokoph, H. and Prouza, M. and Proyetti, M. and Puerto-Gimenez, I. and Puehlhofer, G. and Puljak, I. and Punch, M. and Pyziol, R. and Quel, E. J. and Quinn, J. and Quirrenbach, A. and Racero, E. and Rajda, P. J. and Ramon, P. and Rando, R. and Rannot, R. C. and Rataj, M. and Raue, M. and Reardon, P. and Reimann, O. and Reimer, A. and Reimer, O. and Reitberger, K. and Renaud, M. and Renner, S. and Reville, B. and Rhode, W. and Ribo, M. and Ribordy, M. and Richer, M. G. and Rico, J. and Ridky, J. and Rieger, F. and Ringegni, P. and Ripken, J. and Ristori, P. R. and Riviere, A. and Rivoire, S. and Rob, L. and Roeser, U. and Rohlfs, R. and Rojas, G. and Romano, Patrizia and Romaszkan, W. and Romero, G. E. and Rosen, S. and Lees, S. Rosier and Ross, D. and Rouaix, G. and Rousselle, J. and Rousselle, S. and Rovero, A. C. and Roy, F. and Royer, S. and Rudak, B. and Rulten, C. and Rupinski, M. and Russo, F. and Ryde, F. and Sacco, B. and Saemann, E. O. and Saggion, A. and Safiakian, V. and Saito, K. and Saito, T. and Saito, Y. and Sakaki, N. and Sakonaka, R. and Salini, A. and Sanchez, F. and Sanchez-Conde, M. and Sandoval, A. and Sandaker, H. and Sant'Ambrogio, E. and Santangelo, A. and Santos, E. M. and Sanuy, A. and Sapozhnikov, L. and Sarkar, S. and Sartore, N. and Sasaki, H. and Satalecka, K. and Sawada, M. and Scalzotto, V. and Scapin, V. and Scarcioffolo, M. and Schafer, J. and Schanz, T. and Schlenstedt, S. and Schlickeiser, R. and Schmidt, T. and Schmoll, J. and Schovanek, P. and Schroedter, M. and Schultz, C. and Schultze, J. and Schulz, A. and Schure, K. and Schwab, T. and Schwanke, U. and Schwarz, J. and Schwarzburg, S. and Schweizer, T. and Schwemmer, S. and Segreto, A. and Seiradakis, J. -H. and Sembroski, G. H. and Seweryn, K. and Sharma, M. and Shayduk, M. and Shellard, R. C. and Shi, J. and Shibata, T. and Shibuya, A. and Shum, E. and Sidoli, L. and Sidz, M. and Sieiro, J. and Sikora, M. and Silk, J. and Sillanpaa, A. and Singh, B. B. and Sitarek, J. and Skole, C. and Smareglia, R. and Smith, A. and Smith, D. and Smith, J. and Smith, N. and Sobczynska, D. and Sol, H. and Sottile, G. and Sowinski, M. and Spanier, F. and Spiga, D. and Spyrou, S. and Stamatescu, V. and Stamerra, A. and Starling, R. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steiner, S. and Stergioulas, N. and Sternberger, R. and Sterzel, M. and Stinzing, F. and Stodulski, M. and Straumann, U. and Strazzeri, E. and Stringhetti, L. and Suarez, A. and Suchenek, M. and Sugawara, R. and Sulanke, K. -H. and Sun, S. and Supanitsky, A. D. and Suric, T. and Sutcliffe, P. and Sykes, J. and Szanecki, M. and Szepieniec, T. and Szostek, A. and Tagliaferri, G. and Tajima, H. and Takahashi, H. and Takahashi, K. and Takalo, L. and Takami, H. and Talbot, C. and Tammi, J. and Tanaka, M. and Tanaka, S. and Tasan, J. and Tavani, M. and Tavernet, J. -P. and Tejedor, L. A. and Telezhinsky, Igor O. and Temnikov, P. and Tenzer, C. and Terada, Y. and Terrier, R. and Teshima, M. and Testa, V. and Tezier, D. and Thuermann, D. and Tibaldo, L. and Tibolla, O. and Tiengo, A. and Tluczykont, M. and Todero Peixoto, C. J. and Tokanai, F. and Tokarz, M. and Toma, K. and Torii, K. and Tornikoski, M. and Torres, D. F. and Torres, M. and Tosti, G. and Totani, T. and Toussenel, C. and Tovmassian, G. and Travnicek, P. and Trifoglio, M. and Troyano, I. and Tsinganos, K. and Ueno, H. and Umehara, K. and Upadhya, S. S. and Usher, T. and Uslenghi, M. and Valdes-Galicia, J. F. and Vallania, P. and Vallejo, G. and van Driel, W. and van Eldik, C. and Vandenbrouke, J. and Vanderwalt, J. and Vankov, H. and Vasileiadis, G. and Vassiliev, V. and Veberic, D. and Vegas, I. and Vercellone, S. and Vergani, S. and Veyssiere, C. and Vialle, J. P. and Viana, A. and Videla, M. and Vincent, P. and Vincent, S. and Vink, J. and Vlahakis, N. and Vlahos, L. and Vogler, P. and Vollhardt, A. and von Gunten, H. P. and Vorobiov, S. and Vuerli, C. and Waegebaert, V. and Wagner, R. and Wagner, R. G. and Wagner, S. and Wakely, S. P. and Walter, R. and Walther, T. and Warda, K. and Warwick, R. and Wawer, P. and Wawrzaszek, R. and Webb, N. and Wegner, P. and Weinstein, A. and Weitzel, Q. and Welsing, R. and Werner, M. and Wetteskind, H. and White, R. and Wierzcholska, A. and Wiesand, S. and Wilkinson, M. and Williams, D. A. and Willingale, R. and Winiarski, K. and Wischnewski, R. and Wisniewski, L. and Wood, M. and Woernlein, A. and Xiong, Q. and Yadav, K. K. and Yamamoto, H. and Yamamoto, T. and Yamazaki, R. and Yanagita, S. and Yebras, J. M. and Yelos, D. and Yoshida, A. and Yoshida, T. and Yoshikoshi, T. and Zabalza, V. and Zacharias, M. and Zajczyk, A. and Zanin, R. and Zdziarski, A. and Zech, Alraune and Zhao, A. and Zhou, X. and Zietara, K. and Ziolkowski, J. and Ziolkowski, P. and Zitelli, V. and Zurbach, C. and Zychowski, P.}, title = {Introducing the CTA concept}, series = {Astroparticle physics}, volume = {43}, journal = {Astroparticle physics}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, organization = {CTA Consortium}, issn = {0927-6505}, doi = {10.1016/j.astropartphys.2013.01.007}, pages = {3 -- 18}, year = {2013}, abstract = {The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Chromey, A. J. and Connolly, M. P. and Cui, Wei and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kertzman, M. and Kieda, David and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, Marcos and Sembroski, G. H. and Shahinyan, Karlen and Sushch, I. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Abdollahi, S. and Ajello, Marco and Baldini, Luca and Barbiellini, G. and Bastieri, Denis and Bellazzini, Ronaldo and Berenji, B. and Bissaldi, Elisabetta and Blandford, R. D. and Bonino, R. and Bottacini, E. and Brandt, Terri J. and Bruel, P. and Buehler, R. and Cameron, R. A. and Caputo, R. and Caraveo, P. A. and Castro, D. and Cavazzuti, E. and Charles, Eric and Chiaro, G. and Ciprini, S. and Cohen-Tanugi, Johann and Costantin, D. and Cutini, S. and de Palma, F. and Di Lalla, N. and Di Mauro, M. and Di Venere, L. and Dominguez, A. and Favuzzi, C. and Fegan, S. J. and Franckowiak, Anna and Fukazawa, Yasushi and Funk, Stefan and Fusco, Piergiorgio and Gargano, Fabio and Gasparrini, Dario and Giglietto, Nicola and Giordano, F. and Giroletti, Marcello and Green, D. and Grenier, I. A. and Guillemot, L. and Guiriec, Sylvain and Hays, Elizabeth and Hewitt, John W. and Horan, D. and Johannesson, G. and Kensei, S. and Kuss, M. and Larsson, Stefan and Latronico, L. and Lemoine-Goumard, Marianne and Li, J. and Longo, Francesco and Loparco, Francesco and Lovellette, M. N. and Lubrano, Pasquale and Magill, Jeffrey D. and Maldera, Simone and Mazziotta, Mario Nicola and McEnery, J. E. and Michelson, P. F. and Mitthumsiri, W. and Mizuno, Tsunefumi and Monzani, Maria Elena and Morselli, Aldo and Moskalenko, Igor V. and Negro, M. and Nuss, E. and Ojha, R. and Omodei, Nicola and Orienti, M. and Orlando, E. and Palatiello, M. and Paliya, Vaidehi S. and Paneque, D. and Perkins, Jeremy S. and Persic, M. and Pesce-Rollins, Melissa and Petrosian, Vahe' and Piron, F. and Porter, Troy A. and Principe, G. and Raino, S. and Rando, Riccardo and Rani, B. and Razzano, Massimilano and Razzaque, Soebur and Reimer, A. and Reimer, Olaf and Reposeur, T. and Sgro, C. and Siskind, E. J. and Spandre, Gloria and Spinelli, P. and Suson, D. J. and Tajima, Hiroyasu and Thayer, J. B. and Thompson, David J. and Torres, Diego F. and Tosti, Gino and Troja, Eleonora and Valverde, J. and Vianello, Giacomo and Vogel, M. and Wood, K. and Yassine, M. and Alfaro, R. and Alvarez, C. and Alvarez, J. D. and Arceo, R. and Arteaga-Velazquez, J. C. and Rojas, D. Avila and Ayala Solares, H. A. and Becerril, A. and Belmont-Moreno, E. and BenZvi, S. Y. and Bernal, A. and Braun, J. and Brisbois, C. and Caballero-Mora, K. S. and Capistran, T. and Carraminana, A. and Casanova, Sabrina and Castillo, M. and Cotti, U. and Cotzomi, J. and Coutino de Leon, S. and De Leon, C. and De la Fuente, E. and Dichiara, S. and Dingus, B. L. and DuVernois, M. A. and Diaz-Velez, J. C. and Engel, K. and Enriquez-Rivera, O. and Fiorino, D. W. and Fleischhack, H. and Fraija, N. and Garcia-Gonzalez, J. A. and Garfias, F. and Gonzalez Munoz, A. and Gonzalez, M. M. and Goodman, J. A. and Hampel-Arias, Z. and Harding, J. P. and Hernandez, S. and Hernandez-Almada, A. and Hona, B. and Hueyotl-Zahuantitla, F. and Hui, C. M. and Huntemeyer, P. and Iriarte, A. and Jardin-Blicq, A. and Joshi, V. and Kaufmann, S. and Lara, A. and Lauer, R. J. and Lee, W. H. and Lennarz, D. and Leon Vargas, H. and Linnemann, J. T. and Longinotti, A. L. and Luis-Raya, G. and Luna-Garcia, R. and Lopez-Coto, R. and Malone, K. and Marinelli, S. S. and Martinez, O. and Martinez-Castellanos, I. and Martinez-Castro, J. and Martinez-Huerta, H. and Matthews, J. A. and Miranda-Romagnoli, P. and Moreno, E. and Mostafa, M. and Nayerhoda, A. and Nellen, L. and Newbold, M. and Nisa, M. U. and Noriega-Papaqui, R. and Pelayo, R. and Pretz, J. and Perez-Perez, E. G. and Ren, Z. and Rho, C. D. and Riviere, C. and Rosa-Gonzalez, D. and Rosenberg, M. and Ruiz-Velasco, E. and Salazar, H. and Greus, F. Salesa and Sandoval, A. and Schneider, M. and Arroyo, M. Seglar and Sinnis, G. and Smith, A. J. and Springer, R. W. and Surajbali, P. and Taboada, Ignacio and Tibolla, O. and Tollefson, K. and Torres, I. and Ukwatta, Tilan N. and Villasenor, L. and Weisgarber, T. and Westerhoff, Stefan and Wisher, I. G. and Wood, J. and Yapici, Tolga and Yodh, G. and Zepeda, A. and Zhou, H.}, title = {VERITAS and Fermi-LAT Observations of TeV Gamma-Ray Sources Discovered by HAWC in the 2HWC Catalog}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {866}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration Fermi-LAT Collaboration HAWC Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aade4e}, pages = {18}, year = {2018}, abstract = {The High Altitude Water Cherenkov (HAWC) collaboration recently published their 2HWC catalog, listing 39 very high energy (VHE; >100 GeV) gamma-ray sources based on 507 days of observation. Among these, 19 sources are not associated with previously known teraelectronvolt (TeV) gamma-ray sources. We have studied 14 of these sources without known counterparts with VERITAS and Fermi-LAT. VERITAS detected weak gamma-ray emission in the 1 TeV-30 TeV band in the region of DA 495, a pulsar wind nebula coinciding with 2HWC J1953+294, confirming the discovery of the source by HAWC. We did not find any counterpart for the selected 14 new HAWC sources from our analysis of Fermi-LAT data for energies higher than 10 GeV. During the search, we detected gigaelectronvolt (GeV) gamma-ray emission coincident with a known TeV pulsar wind nebula, SNR G54.1+0.3 (VER J1930+188), and a 2HWC source, 2HWC J1930+188. The fluxes for isolated, steady sources in the 2HWC catalog are generally in good agreement with those measured by imaging atmospheric Cherenkov telescopes. However, the VERITAS fluxes for SNR G54.1+0.3, DA 495, and TeV J2032+4130 are lower than those measured by HAWC, and several new HAWC sources are not detected by VERITAS. This is likely due to a change in spectral shape, source extension, or the influence of diffuse emission in the source region.}, language = {en} } @article{PenaAnguloNadalRomeroGonzalezHidalgoetal.2019, author = {Pena-Angulo, D. and Nadal-Romero, E. and Gonzalez-Hidalgo, J. C. and Albaladejo, J. and Andreu, V and Bagarello, V and Barhi, H. and Batalla, R. J. and Bernal, S. and Bienes, R. and Campo, J. and Campo-Bescos, M. A. and Canatario-Duarte, A. and Canton, Y. and Casali, J. and Castillo, V and Cerda, Artemi and Cheggour, A. and Cid, Patricio and Cortesi, N. and Desir, G. and Diaz-Pereira, E. and Espigares, T. and Estrany, Joan and Fernandez-Raga, M. and Ferreira, Carla S. S. and Ferro, Vito and Gallart, Francesc and Gimenez, R. and Gimeno, E. and Gomez, J. A. and Gomez-Gutierrez, A. and Gomez-Macpherson, H. and Gonzalez-Pelayo, O. and Hueso-Gonzalez, P. and Kairis, O. and Karatzas, G. P. and Klotz, S. and Kosmas, C. and Lana-Renault, Noemi and Lasanta, T. and Latron, J. and Lazaro, R. and Le Bissonnais, Y. and Le Bouteiller, C. and Licciardello, F. and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Lucia, A. and Marin, C. and Marques, M. J. and Martinez-Fernandez, J. and Martinez-Mena, M. and Martinez-Murillo, J. F. and Mateos, L. and Mathys, N. and Merino-Martin, L. and Moreno-de las Heras, M. and Moustakas, N. and Nicolau, J. M. and Novara, A. and Pampalone, V and Raclot, D. and Rodriguez-Blanco, M. L. and Rodrigo-Comino, Jes{\´u}s and Romero-Diaz, A. and Roose, E. and Rubio, J. L. and Ruiz-Sinoga, J. D. and Schnabel, S. and Senciales-Gonzalez, J. M. and Simonneaux, V and Sole-Benet, A. and Taguas, E. and Taboada-Castro, M. M. and Taboada-Castro, M. T. and Todisco, Francesca and Ubeda, X. and Varouchakis, E. A. and Vericat, Damia and Wittenberg, L. and Zabaleta, A. and Zorn, M.}, title = {Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin}, series = {Journal of hydrology}, volume = {571}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2019.01.059}, pages = {390 -- 405}, year = {2019}, abstract = {Soil degradation by water is a serious environmental problem worldwide, with specific climatic factors being the major causes. We investigated the relationships between synoptic atmospheric patterns (i.e. weather types, WTs) and runoff, erosion and sediment yield throughout the Mediterranean basin by analyzing a large database of natural rainfall events at 68 research sites in 9 countries. Principal Component Analysis (PCA) was used to identify spatial relationships of the different WTs including three hydro-sedimentary variables: rainfall, runoff, and sediment yield (SY, used to refer to both soil erosion measured at plot scale and sediment yield registered at catchment scale). The results indicated 4 spatial classes of rainfall and runoff: (a) northern sites dependent on North (N) and North West (NW) flows; (b) eastern sites dependent on E and NE flows; (c) southern sites dependent on S and SE flows; and, finally, (d) western sites dependent on W and SW flows. Conversely, three spatial classes are identified for SY characterized by: (a) N and NE flows in northern sites (b) E flows in eastern sites, and (c) W and SW flows in western sites. Most of the rainfall, runoff and SY occurred during a small number of daily events, and just a few WTs accounted for large percentages of the total. Our results confirm that characterization by WT improves understanding of the general conditions under which runoff and SY occur, and provides useful information for understanding the spatial variability of runoff, and SY throughout the Mediterranean basin. The approach used here could be useful to aid of the design of regional water management and soil conservation measures.}, language = {en} } @article{ActisAgnettaAharonianetal.2011, author = {Actis, M. and Agnetta, G. and Aharonian, Felix A. and Akhperjanian, A. G. and Aleksic, J. and Aliu, E. and Allan, D. and Allekotte, I. and Antico, F. and Antonelli, L. A. and Antoranz, P. and Aravantinos, A. and Arlen, T. and Arnaldi, H. and Artmann, S. and Asano, K. and Asorey, H. G. and Baehr, J. and Bais, A. and Baixeras, C. and Bajtlik, S. and Balis, D. and Bamba, A. and Barbier, C. and Barcelo, M. and Barnacka, Anna and Barnstedt, J{\"u}rgen and de Almeida, U. Barres and Barrio, J. A. and Basso, S. and Bastieri, D. and Bauer, C. and Becerra Gonzalez, J. and Becherini, Yvonne and Bechtol, K. C. and Becker, J. and Beckmann, Volker and Bednarek, W. and Behera, B. and Beilicke, M. and Belluso, M. and Benallou, M. and Benbow, W. and Berdugo, J. and Berger, K. and Bernardino, T. and Bernl{\"o}hr, K. and Biland, A. and Billotta, S. and Bird, T. and Birsin, E. and Bissaldi, E. and Blake, S. and Blanch Bigas, O. and Bobkov, A. A. and Bogacz, L. and Bogdan, M. and Boisson, Catherine and Boix Gargallo, J. and Bolmont, J. and Bonanno, G. and Bonardi, A. and Bonev, T. and Borkowski, Janett and Botner, O. and Bottani, A. and Bourgeat, M. and Boutonnet, C. and Bouvier, A. and Brau-Nogue, S. and Braun, I. and Bretz, T. and Briggs, M. S. and Brun, Pierre and Brunetti, L. and Buckley, H. and Bugaev, V. and Buehler, R. and Bulik, Tomasz and Busetto, G. and Buson, S. and Byrum, K. and Cailles, M. and Cameron, R. A. and Canestrari, R. and Cantu, S. and Carmona, E. and Carosi, A. and Carr, John and Carton, P. H. and Casiraghi, M. and Castarede, H. and Catalano, O. and Cavazzani, S. and Cazaux, S. and Cerruti, B. and Cerruti, M. and Chadwick, M. and Chiang, J. and Chikawa, M. and Cieslar, M. and Ciesielska, M. and Cillis, A. N. and Clerc, C. and Colin, P. and Colome, J. and Compin, M. and Conconi, P. and Connaughton, V. and Conrad, Jan and Contreras, J. L. and Coppi, P. and Corlier, M. and Corona, P. and Corpace, O. and Corti, D. and Cortina, J. and Costantini, H. and Cotter, G. and Courty, B. and Couturier, S. and Covino, S. and Croston, J. and Cusumano, G. and Daniel, M. K. and Dazzi, F. and Deangelis, A. and de Cea del Pozo, E. and Dal Pino, E. M. de Gouveia and de Jager, O. and de la Calle Perez, I. and De La Vega, G. and De Lotto, B. and de Naurois, M. and Wilhelmi, E. de Ona and de Souza, V. and Decerprit, B. and Deil, C. and Delagnes, E. and Deleglise, G. and Delgado, C. and Dettlaff, T. and Di Paolo, A. and Di Pierro, F. and Diaz, C. and Dick, J. and Dickinson, H. and Digel, S. W. and Dimitrov, D. and Disset, G. and Djannati-Ata{\"i}, A. and Doert, M. and Domainko, W. and Dorner, D. and Doro, M. and Dournaux, J. -L. and Dravins, D. and Drury, L. and Dubois, F. and Dubois, R. and Dubus, G. and Dufour, C. and Durand, D. and Dyks, J. and Dyrda, M. and Edy, E. and Egberts, Kathrin and Eleftheriadis, C. and Elles, S. and Emmanoulopoulos, D. and Enomoto, R. and Ernenwein, J. -P. and Errando, M. and Etchegoyen, A. and Falcone, A. D. and Farakos, K. and Farnier, C. and Federici, S. and Feinstein, F. and Ferenc, D. and Fillin-Martino, E. and Fink, D. and Finley, C. and Finley, J. P. and Firpo, R. and Florin, D. and Foehr, C. and Fokitis, E. and Font, Ll. and Fontaine, G. and Fontana, A. and Foerster, A. and Fortson, L. and Fouque, N. and Fransson, C. and Fraser, G. W. and Fresnillo, L. and Fruck, C. and Fujita, Y. and Fukazawa, Y. and Funk, S. and Gaebele, W. and Gabici, S. and Gadola, A. and Galante, N. and Gallant, Y. and Garcia, B. and Garcia Lopez, R. J. and Garrido, D. and Garrido, L. and Gascon, D. and Gasq, C. and Gaug, M. and Gaweda, J. and Geffroy, N. and Ghag, C. and Ghedina, A. and Ghigo, M. and Gianakaki, E. and Giarrusso, S. and Giavitto, G. and Giebels, B. and Giro, E. and Giubilato, P. and Glanzman, T. and Glicenstein, J. -F. and Gochna, M. and Golev, V. and Gomez Berisso, M. and Gonzalez, A. and Gonzalez, F. and Granena, F. and Graciani, R. and Granot, J. and Gredig, R. and Green, A. and Greenshaw, T. and Grimm, O. and Grube, J. and Grudzinska, M. and Grygorczuk, J. and Guarino, V. and Guglielmi, L. and Guilloux, F. and Gunji, S. and Gyuk, G. and Hadasch, D. and Haefner, D. and Hagiwara, R. and Hahn, J. and Hallgren, A. and Hara, S. and Hardcastle, M. J. and Hassan, T. and Haubold, T. and Hauser, M. and Hayashida, M. and Heller, R. and Henri, G. and Hermann, G. and Herrero, A. and Hinton, James Anthony and Hoffmann, D. and Hofmann, W. and Hofverberg, P. and Horns, D. and Hrupec, D. and Huan, H. and Huber, B. and Huet, J. -M. and Hughes, G. and Hultquist, K. and Humensky, T. B. and Huppert, J. -F. and Ibarra, A. and Illa, J. M. and Ingjald, J. and Inoue, S. and Inoue, Y. and Ioka, K. and Jablonski, C. and Jacholkowska, A. and Janiak, M. and Jean, P. and Jensen, H. and Jogler, T. and Jung, I. and Kaaret, P. and Kabuki, S. and Kakuwa, J. and Kalkuhl, C. and Kankanyan, R. and Kapala, M. and Karastergiou, A. and Karczewski, M. and Karkar, S. and Karlsson, N. and Kasperek, J. and Katagiri, H. and Katarzynski, K. and Kawanaka, N. and Kedziora, B. and Kendziorra, E. and Khelifi, B. and Kieda, D. and Kifune, T. and Kihm, T. and Klepser, S. and Kluzniak, W. and Knapp, J. and Knappy, A. R. and Kneiske, T. and Knoedlseder, J. and Koeck, F. and Kodani, K. and Kohri, K. and Kokkotas, K. and Komin, N. and Konopelko, A. and Kosack, K. and Kossakowski, R. and Kostka, P. and Kotula, J. and Kowal, G. and Koziol, J. and Kraehenbuehl, T. and Krause, J. and Krawczynski, H. and Krennrich, F. and Kretzschmann, A. and Kubo, H. and Kudryavtsev, V. A. and Kushida, J. and La Barbera, N. and La Parola, V. and La Rosa, G. and Lopez, A. and Lamanna, G. and Laporte, P. and Lavalley, C. and Le Flour, T. and Le Padellec, A. and Lenain, J. -P. and Lessio, L. and Lieunard, B. and Lindfors, E. and Liolios, A. and Lohse, T. and Lombardi, S. and Lopatin, A. and Lorenz, E. and Lubinski, P. and Luz, O. and Lyard, E. and Maccarone, M. C. and Maccarone, T. and Maier, G. and Majumdar, P. and Maltezos, S. and Malkiewicz, P. and Mana, C. and Manalaysay, A. and Maneva, G. and Mangano, A. and Manigot, P. and Marin, J. and Mariotti, M. and Markoff, S. and Martinez, G. and Martinez, M. and Mastichiadis, A. and Matsumoto, H. and Mattiazzo, S. and Mazin, D. and McComb, T. J. L. and McCubbin, N. and McHardy, I. and Medina, C. and Melkumyan, D. and Mendes, A. and Mertsch, P. and Meucci, M. and Michalowski, J. and Micolon, P. and Mineo, T. and Mirabal, N. and Mirabel, F. and Miranda, J. M. and Mirzoyan, R. and Mizuno, T. and Moal, B. and Moderski, R. and Molinari, E. and Monteiro, I. and Moralejo, A. and Morello, C. and Mori, K. and Motta, G. and Mottez, F. and Moulin, E. and Mukherjee, R. and Munar, P. and Muraishi, H. and Murase, K. and Murphy, A. Stj. and Nagataki, S. and Naito, T. and Nakamori, T. and Nakayama, K. and Naumann, C. L. and Naumann, D. and Nayman, P. and Nedbal, D. and Niedzwiecki, A. and Niemiec, J. and Nikolaidis, A. and Nishijima, K. and Nolan, S. J. and Nowak, N. and O'Brien, P. T. and Ochoa, I. and Ohira, Y. and Ohishi, M. and Ohka, H. and Okumura, A. and Olivetto, C. and Ong, R. A. and Orito, R. and Orr, M. and Osborne, J. P. and Ostrowski, M. and Otero, L. and Otte, A. N. and Ovcharov, E. and Oya, I. and Ozieblo, A. and Paiano, S. and Pallota, J. and Panazol, J. L. and Paneque, D. and Panter, M. and Paoletti, R. and Papyan, G. and Paredes, J. M. and Pareschi, G. and Parsons, R. D. and Arribas, M. Paz and Pedaletti, G. and Pepato, A. and Persic, M. and Petrucci, P. O. and Peyaud, B. and Piechocki, W. and Pita, S. and Pivato, G. and Platos, L. and Platzer, R. and Pogosyan, L. and Pohl, Martin and Pojmanski, G. and Ponz, J. D. and Potter, W. and Prandini, E. and Preece, R. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quel, E. and Quirrenbach, A. and Rajda, P. and Rando, R. and Rataj, M. and Raue, M. and Reimann, C. and Reimann, O. and Reimer, A. and Reimer, O. and Renaud, M. and Renner, S. and Reymond, J. -M. and Rhode, W. and Ribo, M. and Ribordy, M. and Rico, J. and Rieger, F. and Ringegni, P. and Ripken, J. and Ristori, P. and Rivoire, S. and Rob, L. and Rodriguez, S. and Roeser, U. and Romano, Patrizia and Romero, G. E. and Rosier-Lees, S. and Rovero, A. C. and Roy, F. and Royer, S. and Rudak, B. and Rulten, C. B. and Ruppel, J. and Russo, F. and Ryde, F. and Sacco, B. and Saggion, A. and Sahakian, V. and Saito, K. and Saito, T. and Sakaki, N. and Salazar, E. and Salini, A. and Sanchez, F. and Sanchez Conde, M. A. and Santangelo, A. and Santos, E. M. and Sanuy, A. and Sapozhnikov, L. and Sarkar, S. and Scalzotto, V. and Scapin, V. and Scarcioffolo, M. and Schanz, T. and Schlenstedt, S. and Schlickeiser, R. and Schmidt, T. and Schmoll, J. and Schroedter, M. and Schultz, C. and Schultze, J. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schweizer, T. and Seiradakis, J. and Selmane, S. and Seweryn, K. and Shayduk, M. and Shellard, R. C. and Shibata, T. and Sikora, M. and Silk, J. and Sillanpaa, A. and Sitarek, J. and Skole, C. and Smith, N. and Sobczynska, D. and Sofo Haro, M. and Sol, H. and Spanier, F. and Spiga, D. and Spyrou, S. and Stamatescu, V. and Stamerra, A. and Starling, R. L. C. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steiner, S. and Stergioulas, N. and Sternberger, R. and Stinzing, F. and Stodulski, M. and Straumann, U. and Suarez, A. and Suchenek, M. and Sugawara, R. and Sulanke, K. H. and Sun, S. and Supanitsky, A. D. and Sutcliffe, P. and Szanecki, M. and Szepieniec, T. and Szostek, A. and Szymkowiak, A. and Tagliaferri, G. and Tajima, H. and Takahashi, H. and Takahashi, K. and Takalo, L. and Takami, H. and Talbot, R. G. and Tam, P. H. and Tanaka, M. and Tanimori, T. and Tavani, M. and Tavernet, J. -P. and Tchernin, C. and Tejedor, L. A. and Telezhinsky, Igor O. and Temnikov, P. and Tenzer, C. and Terada, Y. and Terrier, R. and Teshima, M. and Testa, V. and Tibaldo, L. and Tibolla, O. and Tluczykont, M. and Peixoto, C. J. Todero and Tokanai, F. and Tokarz, M. and Toma, K. and Torres, D. F. and Tosti, G. and Totani, T. and Toussenel, F. and Vallania, P. and Vallejo, G. and van der Walt, J. and van Eldik, C. and Vandenbroucke, J. and Vankov, H. and Vasileiadis, G. and Vassiliev, V. V. and Vegas, I. and Venter, L. and Vercellone, S. and Veyssiere, C. and Vialle, J. P. and Videla, M. and Vincent, P. and Vink, J. and Vlahakis, N. and Vlahos, L. and Vogler, P. and Vollhardt, A. and Volpe, F. and Von Gunten, H. P. and Vorobiov, S. and Wagner, S. and Wagner, R. M. and Wagner, B. and Wakely, S. P. and Walter, P. and Walter, R. and Warwick, R. and Wawer, P. and Wawrzaszek, R. and Webb, N. and Wegner, P. and Weinstein, A. and Weitzel, Q. and Welsing, R. and Wetteskind, H. and White, R. and Wierzcholska, A. and Wilkinson, M. I. and Williams, D. A. and Winde, M. and Wischnewski, R. and Wisniewski, L. and Wolczko, A. and Wood, M. and Xiong, Q. and Yamamoto, T. and Yamaoka, K. and Yamazaki, R. and Yanagita, S. and Yoffo, B. and Yonetani, M. and Yoshida, A. and Yoshida, T. and Yoshikoshi, T. and Zabalza, V. and Zagdanski, A. and Zajczyk, A. and Zdziarski, A. and Zech, Alraune and Zietara, K. and Ziolkowski, P. and Zitelli, V. and Zychowski, P.}, title = {Design concepts for the Cherenkov Telescope Array CTA an advanced facility for ground-based high-energy gamma-ray astronomy}, series = {Experimental astronomy : an international journal on astronomical instrumentation and data analysis}, volume = {32}, journal = {Experimental astronomy : an international journal on astronomical instrumentation and data analysis}, number = {3}, publisher = {Springer}, address = {Dordrecht}, organization = {CTA Consortium}, issn = {0922-6435}, doi = {10.1007/s10686-011-9247-0}, pages = {193 -- 316}, year = {2011}, abstract = {Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.}, language = {en} } @article{AhnenAnsoldiAntonellietal.2017, author = {Ahnen, M. L. and Ansoldi, S. and Antonelli, L. A. and Antoranz, P. and Babic, A. and Banerjee, B. and Bangale, P. and de Almeida, U. Barres and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Bernardini, E. and Berti, A. and Biasuzzi, B. and Biland, A. and Blanch, O. and Bonnefoy, S. and Bonnoli, G. and Borracci, F. and Bretz, T. and Buson, S. and Carosi, A. and Chatterjee, A. and Clavero, R. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Lotto, B. and Wilhelmi, E. de Ona and Di Pierro, F. and Doert, M. and Dominguez, A. and Prester, D. Dominis and Dorner, D. and Doro, M. and Einecke, S. and Glawion, D. Eisenacher and Elsaesser, D. and Engelkemeier, M. and Ramazani, V. Fallah and Fernandez-Barral, A. and Fidalgo, D. and Fonseca, M. V. and Font, L. and Frantzen, K. and Fruck, C. and Galindo, D. and Lopez, R. J. Garcia and Garczarczyk, M. and Terrats, D. Garrido and Gaug, M. and Giammaria, P. and Godinovic, N. and Gonzalez Munoz, A. and Gora, D. and Guberman, D. and Hadasch, D. and Hahn, A. and Hanabata, Y. and Hayashida, M. and Herrera, J. and Hose, J. and Hrupec, D. and Hughes, G. and Idec, W. and Kodani, K. and Konno, Y. and Kubo, H. and Kushida, J. and La Barbera, A. and Lelas, D. and Lindfors, E. and Lombardi, S. and Longo, F. and Lopez, M. and Lopez-Coto, R. and Majumdar, P. and Makariev, M. and Mallot, K. and Maneva, G. and Manganaro, M. and Mannheim, K. and Maraschi, L. and Marcote, B. and Mariotti, M. and Martinez, M. and Mazin, D. and Menzel, U. and Miranda, J. M. and Mirzoyan, R. and Moralejo, A. and Moretti, E. and Nakajima, D. and Neustroev, V. and Niedzwiecki, A. and Rosillo, M. Nievas and Nilsson, K. and Nishijima, K. and Noda, K. and Nogues, L. and Overkemping, A. and Paiano, S. and Palacio, J. and Palatiello, M. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Paredes-Fortuny, X. and Pedaletti, G. and Peresano, M. and Perri, L. and Persic, M. and Poutanen, J. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Reichardt, I. and Rhode, W. and Ribo, M. and Rico, J. and Rodriguez Garcia, J. and Saito, T. and Satalecka, K. and Schroder, S. and Schultz, C. and Schweizer, T. and Shore, S. N. and Sillanpaa, A. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Stamerra, A. and Steinbring, T. and Strzys, M. and Suric, T. and Takalo, L. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Thaele, J. and Torres, D. F. and Toyama, T. and Treves, A. and Vanzo, G. and Verguilov, V. and Vovk, I. and Ward, J. E. and Will, M. and Wu, M. H. and Zanin, R. and Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Gillanders, G. H. and Griffin, S. and Grube, J. and Huetten, M. and Hanna, D. and Holder, J. and Humensky, T. B. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Lang, M. J. and Maier, G. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, N. and Park, N. and Perkins, J. and Pichel, A. and Pohl, M. and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Razzaque, S. and Villata, M. and Raiteri, C. M. and Aller, H. D. and Aller, M. F. and Larionov, V. M. and Arkharov, A. A. and Blinov, D. A. and Efimova, N. V. and Grishina, T. S. and Hagen-Thorn, V. A. and Kopatskaya, E. N. and Larionova, L. V. and Larionova, E. G. and Morozova, D. A. and Troitsky, I. S. and Ligustri, R. and Calcidese, P. and Berdyugin, A. and Kurtanidze, O. M. and Nikolashvili, M. G. and Kimeridze, G. N. and Sigua, L. A. and Kurtanidze, S. O. and Chigladze, R. A. and Chen, W. P. and Koptelova, E. and Sakamoto, T. and Sadun, A. C. and Moody, J. W. and Pace, C. and Pearson, R. and Yatsu, Y. and Mori, Y. and Carraminyana, A. and Carrasco, L. and de la Fuente, E. and Norris, J. P. and Smith, P. S. and Wehrle, A. and Gurwell, M. A. and Zook, A. and Pagani, C. and Perri, M. and Capalbi, M. and Cesarini, A. and Krimm, H. A. and Kovalev, Y. Y. and Kovalev, Yu. A. and Ros, E. and Pushkarev, A. B. and Lister, M. L. and Sokolovsky, K. V. and Kadler, M. and Piner, G. and Lahteenmaki, A. and Tornikoski, M. and Angelakis, E. and Krichbaum, T. P. and Nestoras, I. and Fuhrmann, L. and Zensus, J. A. and Cassaro, P. and Orlati, A. and Maccaferri, G. and Leto, P. and Giroletti, M. and Richards, J. L. and Max-Moerbeck, W. and Readhead, A. C. S.}, title = {Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {603}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {MAGIC Collaboration;VERITAS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201629540}, pages = {30}, year = {2017}, abstract = {Aims. We present an extensive study of the BL Lac object Mrk 501 based on a data set collected during the multi-instrument campaign spanning from 2009 March 15 to 2009 August 1, which includes, among other instruments, MAGIC, VERITAS, Whipple 10 m, and Fermi-LAT to cover the gamma-ray range from 0.1 GeV to 20 TeV; RXTE and Swift to cover wavelengths from UV to hard X-rays; and GASP-WEBT, which provides coverage of radio and optical wavelengths. Optical polarization measurements were provided for a fraction of the campaign by the Steward and St. Petersburg observatories. We evaluate the variability of the source and interband correlations, the gamma-ray flaring activity occurring in May 2009, and interpret the results within two synchrotron self-Compton (SSC) scenarios. Methods. The multiband variability observed during the full campaign is addressed in terms of the fractional variability, and the possible correlations are studied by calculating the discrete correlation function for each pair of energy bands where the significance was evaluated with dedicated Monte Carlo simulations. The space of SSC model parameters is probed following a dedicated grid-scan strategy, allowing for a wide range of models to be tested and offering a study of the degeneracy of model-to-data agreement in the individual model parameters, hence providing a less biased interpretation than the "single-curve SSC model adjustment" typically reported in the literature. Results. We find an increase in the fractional variability with energy, while no significant interband correlations of flux changes are found on the basis of the acquired data set. The SSC model grid-scan shows that the flaring activity around May 22 cannot be modeled adequately with a one-zone SSC scenario (using an electron energy distribution with two breaks), while it can be suitably described within a two (independent) zone SSC scenario. Here, one zone is responsible for the quiescent emission from the averaged 4.5-month observing period, while the other one, which is spatially separated from the first, dominates the flaring emission occurring at X-rays and very-high-energy (> 100 GeV, VHE) gamma-rays. The flaring activity from May 1, which coincides with a rotation of the electric vector polarization angle (EVPA), cannot be satisfactorily reproduced by either a one-zone or a two-independent-zone SSC model, yet this is partially affected by the lack of strictly simultaneous observations and the presence of large flux changes on sub-hour timescales (detected at VHE gamma rays). Conclusions. The higher variability in the VHE emission and lack of correlation with the X-ray emission indicate that, at least during the 4.5-month observing campaign in 2009, the highest energy (and most variable) electrons that are responsible for the VHE gamma rays do not make a dominant contribution to the similar to 1 keV emission. Alternatively, there could be a very variable component contributing to the VHE gamma-ray emission in addition to that coming from the SSC scenario. The studies with our dedicated SSC grid-scan show that there is some degeneracy in both the one-zone and the two-zone SSC scenarios probed, with several combinations of model parameters yielding a similar model-to-data agreement, and some parameters better constrained than others. The observed gamma-ray flaring activity, with the EVPA rotation coincident with the first gamma-ray flare, resembles those reported previously for low frequency peaked blazars, hence suggesting that there are many similarities in the flaring mechanisms of blazars with different jet properties.}, language = {en} } @article{AleksicAnsoldiAntonellietal.2015, author = {Aleksic, J. and Ansoldi, S. and Antonelli, L. A. and Antoranz, P. and Babic, A. and Bangale, P. and de Almeida, U. Barres and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Berger, K. and Bernardini, E. and Bilandli, A. and Bianch, O. and Bock, R. K. and Bonnefoy, S. and Bonnoli, G. and Borracci, F. and Bretz, T. and Carmona, E. and Carosi, A. and Fidalgo, D. Carreto and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Caneva, G. and De Lotto, B. and Delgado Mendez, C. and Doert, M. and Dominguez, A. and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Einecke, S. and Eisenacher, D. and Elsaesser, D. and Farina, E. and Ferenc, D. and Fonseca, M. V. and Font, L. and Frantzen, K. and Fruck, C. and Garcia Lopez, R. J. and Garczarczyki, M. and Garrido Terrats, D. and Gaug, M. and Giavitto, G. and Godinovic, N. and Gonzalez Munoz, A. and Gozzini, S. R. and Hadamek, A. and Hadasch, D. and Herrero, A. and Hildebrand, D. and Hose, J. and Hrupec, D. and Idec, W. and Kadenius, V. and Kellermann, H. and Knoetig, M. L. and Krause, J. and Kushida, J. and La Barbera, A. and Lelas, D. and Lewandowska, N. and Lindfors, E. and Longo, F. and Lombardi, S. and Lopez, M. and Lopez-Coto, R. and Lopez-Oramas, A. and Lorenz, E. and Lozano, I. and Makariev, M. and Mallot, K. and Maneva, G. and Mankuzhiyil, N. and Mannheim, K. and Maraschi, L. and Marcote, B. and Mariotti, M. and Martinez, M. and Mazin, D. and Menzel, U. and Meucci, M. and Miranda, J. M. and Mirzoyan, R. and Moralejo, A. and Munar-Adrover, P. and Nakajima, D. and Niedzwiecki, A. and Nilsson, K. and Nowak, N. and Orito, R. and Overkemping, A. and Paiano, S. and Palatiello, M. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Paredes-Fortuny, X. and Partini, S. and Persic, M. and Prada, F. and Moroni, P. G. Prada and Prandini, E. and Preziuso, S. and Puljak, I. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Garcia, J. Rodriguez and Ruegamer, S. and Saggion, A. and Saito, K. and Salvati, M. and Satalecka, K. and Scalzotto, V. and Scapin, V. and Schuliz, C. and Schweizer, T. and Shore, S. N. and Sillanpaa, A. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Spanier, F. and Stamatescu, V. and Stamerra, A. and Steinbring, T. and Storz, J. and Sun, S. and Suric, T. and Takalo, L. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Thaele, J. and Tibolla, O. and Torres, D. F. and Toyama, T. and Treves, A. and Uellenbeck, M. and Vogler, P. and Wagner, R. M. and Zandanel, F. and Zanin, R. and Archambault, S. and Behera, B. and Beilicke, M. and Benbow, W. and Bird, R. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Chen, X. and Ciupik, L. and Collins-Hughes, E. and Cui, W. and Dumm, J. and Eisch, J. D. and Falcone, A. and Federici, S. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Ong, R. A. and Otte, A. N. and Park, N. and Pichel, A. and Pohl, M. and Popkow, A. and Prokoph, H. and Quinn, M. J. and Ragan, K. and Rajotte, J. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Villata, M. and Raiteri, C. and Aller, H. D. and Aller, M. F. and Chen, W. P. and Jordan, B. and Koptelova, E. and Kurtanidze, O. M. and Lahteenmaki, A. and McBreen, B. and Larionov, V. M. and Lin, C. S. and Nikolashvili, M. G. and Angelakis, E. and Capalbi, M. and Carraminana, A. and Carrasco, L. and Cassaro, P. and Cesarini, A. and Fuhrmann, L. and Giroletti, M. and Hovatta, T. and Krichbaum, T. P. and Krimm, H. A. and Max-Moerbeck, W. and Moody, J. W. and Maccaferri, G. and Mori, Y. and Nestoras, I. and Orlati, A. and Pace, C. and Pearson, R. and Perri, M. and Readhead, A. C. S. and Richards, J. L. and Sadun, A. C. and Sakamoto, T. and Tammi, J. and Tornikoski, M. and Yatsu, Y. and Zook, A.}, title = {The 2009 multiwavelength campaign on Mrk 421: Variability and correlation studies}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {576}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {MAGIC Collaboration, VERITAS Collaboration, MAGIC Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201424216}, pages = {18}, year = {2015}, abstract = {Aims. We perform an extensive characterization of the broadband emission of Mrk 421, as well as its temporal evolution, during the non-flaring (low) state. The high brightness and nearby location (z = 0.031) of Mrk 421 make it an excellent laboratory to study blazar emission. The goal is to learn about the physical processes responsible for the typical emission of Mrk 421, which might also be extended to other blazars that are located farther away and hence are more difficult to study. Methods. We performed a 4.5-month multi-instrument campaign on Mrk 421 between January 2009 and June 2009, which included VLBA, F-GAMMA, GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other instruments and collaborations. This extensive radio to very-high-energy (VHE; E > 100 GeV) gamma-ray dataset provides excellent temporal and energy coverage, which allows detailed studies of the evolution of the broadband spectral energy distribution. Results. Mrk421 was found in its typical (non-flaring) activity state, with a VHE flux of about half that of the Crab Nebula, yet the light curves show significant variability at all wavelengths, the highest variability being in the X-rays. We determined the power spectral densities (PSD) at most wavelengths and found that all PSDs can be described by power-laws without a break, and with indices consistent with pink/red-noise behavior. We observed a harder-when-brighter behavior in the X-ray spectra and measured a positive correlation between VHE and X-ray fluxes with zero time lag. Such characteristics have been reported many times during flaring activity, but here they are reported for the first time in the non-flaring state. We also observed an overall anti-correlation between optical /UV and X-rays extending over the duration of the campaign. Conclusions. The harder-when-brighter behavior in the X-ray spectra and the measured positive X-ray/VHE correlation during the 2009 multiwavelength campaign suggests that the physical processes dominating the emission during non-flaring states have similarities with those occurring during flaring activity. In particular, this observation supports leptonic scenarios as being responsible for the emission of Mrk 421 during non-flaring activity. Such a temporally extended X-ray /VHE correlation is not driven by any single flaring event, and hence is difficult to explain within the standard hadronic scenarios. The highest variability is observed in the X-ray band, which, within the one-zone synchrotron self-Compton scenario, indicates that the electron energy distribution is most variable at the highest energies.}, language = {en} } @article{AleksicAnsoldiAntonellietal.2015, author = {Aleksic, J. and Ansoldi, S. and Antonelli, L. A. and Antoranz, P. and Babic, A. and Bangale, P. and de Almeida, U. Barres and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Bernardini, E. and Biasuzzi, B. and Biland, A. and Blanch Bigas, O. and Boller, A. and Bonnefoy, S. and Bonnoli, G. and Borracci, F. and Bretz, T. and Carmona, E. and Carosi, A. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Caneva, G. and De Lotto, B. and Wilhelmi, E. de Ona and Mendez, C. Delgado and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Einecke, S. and Eisenacher, D. and Elsaesser, D. and Fonseca, M. V. and Font, L. and Frantzen, K. and Fruck, C. and Galindo, D. and Lopez, R. J. Garcia and Garczarczyk, M. and Terrats, D. Garrido and Gaug, M. and Godinovic, N. and Munoz, A. Gonzalez and Gozzini, S. R. and Hadasch, D. and Hanabata, Y. and Hayashida, M. and Herrera, J. and Hildebrand, D. and Hose, J. and Hrupec, D. and Hughes, G. and Idec, W. and Kadenius, V. and Kellermann, H. and Knoetig, M. L. and Kodani, K. and Konno, Y. and Krause, J. and Kubo, H. and Kushida, J. and La Barbera, A. and Lelas, D. and Lewandowska, N. and Lindfors, E. and Lombardi, S. and Lopez, M. and Lopez-Coto, R. and Lopez-Oramas, A. and Lorenz, E. and Lozano, I. and Makariev, M. and Mallot, K. and Maneva, G. and Mankuzhiyil, N. and Mannheim, K. and Maraschi, L. and Marcote, B. and Mariotti, M. and Martinez, M. and Mazin, D. and Menzel, U. and Miranda, J. M. and Mirzoyan, R. and Moralejo, A. and Munar-Adrover, P. and Nakajima, D. and Niedzwiecki, A. and Nilsson, K. and Nishijima, K. and Noda, K. and Orito, R. and Overkemping, A. and Paiano, S. and Palatiello, M. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Paredes-Fortuny, X. and Persic, M. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Garcia, J. Rodriguez and Rugamer, S. and Saito, T. and Saito, K. and Satalecka, K. and Scalzotto, V. and Scapin, V. and Schultz, C. and Schweizer, T. and Sun, S. and Shore, S. N. and Sillanpaa, A. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Spanier, F. and Stamatescu, V. and Stamerra, A. and Steinbring, T. and Steinke, B. and Storz, J. and Strzys, M. and Takalo, L. and Takami, H. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Thaele, J. and Tibolla, O. and Torres, D. F. and Toyama, T. and Treves, A. and Uellenbeck, M. and Vogler, P. and Zanin, R. and Archambault, S. and Archer, A. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Biteau, Jonathan and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Chen, Xiaoming and Ciupik, L. and Collins-Hughes, E. and Cui, W. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Gyuk, G. and Hakansson, Nils and Holder, J. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Lang, M. J. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Ong, R. A. and Otte, A. N. and Perkins, J. S. and Pichel, A. and Pohl, Manuela and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Wakely, S. P. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Buson, S. and Finke, J. and Villata, M. and Raiteri, C. and Aller, H. D. and Aller, M. F. and Cesarini, A. and Chen, W. P. and Gurwell, M. A. and Jorstad, S. G. and Kimeridze, G. N. and Koptelova, E. and Kurtanidze, O. M. and Kurtanidze, S. O. and Lahteenmaki, A. and Larionov, V. M. and Larionova, E. G. and Lin, H. C. and McBreen, B. and Moody, J. W. and Morozova, D. A. and Marscher, A. P. and Max-Moerbeck, W. and Nikolashvili, M. G. and Perri, M. and Readhead, A. C. S. and Richards, J. L. and Ros, J. A. and Sadun, A. C. and Sakamoto, T. and Sigua, L. A. and Smith, P. S. and Tornikoski, M. and Troitsky, I. S. and Wehrle, A. E. and Jordan, B.}, title = {Unprecedented study of the broadband emission of Mrk 421 during flaring activity in March 2010}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {578}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {MAGIC Collaboration, VERITAS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201424811}, pages = {26}, year = {2015}, abstract = {Context. Because of its proximity, Mrk 421 is one of the best sources on which to study the nature of BL Lac objects. Its proximity allows us to characterize its broadband spectral energy distribution (SED). Aims. The goal is to better understand the mechanisms responsible for the broadband emission and the temporal evolution of Mrk 421. These mechanisms may also apply to more distant blazars that cannot be studied with the same level of detail. Methods. A flare occurring in March 2010 was observed for 13 consecutive days (from MJD 55 265 to MJD 55 277) with unprecedented wavelength coverage from radio to very high energy (VHE; E > 100 GeV) gamma-rays with MAGIC, VERITAS, Whipple, Fermi-LAT, MAXI, RXTE, Swift, GASP-WEBT, and several optical and radio telescopes. We modeled the day-scale SEDs with one-zone and two-zone synchrotron self-Compton (SSC) models, investigated the physical parameters, and evaluated whether the observed broadband SED variability can be associated with variations in the relativistic particle population. Results. The activity of Mrk 421 initially was high and then slowly decreased during the 13-day period. The flux variability was remarkable at the X-ray and VHE bands, but it was minor or not significant at the other bands. The variability in optical polarization was also minor. These observations revealed an almost linear correlation between the X-ray flux at the 2-10 keV band and the VHE gamma-ray flux above 200 GeV, consistent with the gamma-rays being produced by inverse-Compton scattering in the Klein-Nishina regime in the framework of SSC models. The one-zone SSC model can describe the SED of each day for the 13 consecutive days reasonably well, which once more shows the success of this standard theoretical scenario to describe the SEDs of VHE BL Lacs such as Mrk 421. This flaring activity is also very well described by a two-zone SSC model, where one zone is responsible for the quiescent emission, while the other smaller zone, which is spatially separated from the first, contributes to the daily variable emission occurring at X-rays and VHE gamma-rays. The second blob is assumed to have a smaller volume and a narrow electron energy distribution with 3 x 10(4) < gamma < 6 x 10(5), where. is the Lorentz factor of the electrons. Such a two-zone scenario would naturally lead to the correlated variability at the X-ray and VHE bands without variability at the optical/UV band, as well as to shorter timescales for the variability at the X-ray and VHE bands with respect to the variability at the other bands. Conclusions. Both the one-zone and the two-zone SSC models can describe the daily SEDs via the variation of only four or five model parameters, under the hypothesis that the variability is associated mostly with the underlying particle population. This shows that the particle acceleration and cooling mechanism that produces the radiating particles might be the main mechanism responsible for the broadband SED variations during the flaring episodes in blazars. The two-zone SSC model provides a better agreement with the observed SED at the narrow peaks of the low-and high-energy bumps during the highest activity, although the reported one-zone SSC model could be further improved by varying the parameters related to the emitting region itself (delta, B and R), in addition to the parameters related to the particle population.}, language = {en} } @article{FurnissNodaBoggsetal.2015, author = {Furniss, A. and Noda, K. and Boggs, S. and Chiang, J. and Christensen, F. and Craig, W. and Giommi, P. and Hailey, C. and Harisson, F. and Madejski, G. and Nalewajko, K. and Perri, M. and Stern, D. and Urry, M. and Verrecchia, F. and Zhang, W. and Ahnen, M. L. and Ansoldi, S. and Antonelli, L. A. and Antoranz, P. and Babic, A. and Banerjee, B. and Bangale, P. and de Almeida, U. Barres and Barrio, J. A. and Becerra Gonzalez, J. and Bednarek, W. and Bernardini, E. and Biasuzzi, B. and Biland, A. and Blanch Bigas, O. and Bonnefoy, S. and Bonnoli, G. and Borracci, F. and Bretz, T. and Carmona, E. and Carosi, A. and Chatterjee, A. and Clavero, R. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Caneva, G. and De Lotto, B. and de Ona Wilhelmi, E. and Delgado Mendez, C. and Di Pierro, F. and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Einecke, S. and Eisenacher Glawion, D. and Elsaesser, D. and Fernandez-Barral, A. and Fidalgo, D. and Fonseca, M. V. and Font, L. and Frantzen, K. and Fruck, C. and Galindo, D. and Garcia Lopez, R. J. and Garczarczyk, M. and Garrido Terrats, D. and Gaug, M. and Giammaria, P. and Godinovic, N. and Gonzalez Munoz, A. and Guberman, D. and Hanabata, Y. and Hayashida, M. and Herrera, J. and Hose, J. and Hrupec, D. and Hughes, G. and Idec, W. and Kellermann, H. and Kodani, K. and Konno, Y. and Kubo, H. and Kushida, J. and La Barbera, A. and Lelas, D. and Lewandowska, N. and Lindfors, E. and Lombardi, S. and Longo, F. and Lopez, M. and Lopez-Coto, R. and Lopez-Oramas, A. and Lorenz, E. and Majumdar, P. and Makariev, M. and Mallot, K. and Maneva, G. and Manganaro, M. and Mannheim, K. and Maraschi, L. and Marcote, B. and Mariotti, M. and Martinez, M. and Mazin, D. and Menzel, U. and Miranda, J. M. and Mirzoyan, R. and Moralejo, A. and Nakajima, D. and Neustroev, V. and Niedzwiecki, A. and Nievas Rosillo, M. and Nilsson, K. and Nishijima, K. and Orito, R. and Overkemping, A. and Paiano, S. and Palacio, J. and Palatiello, M. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Paredes-Fortuny, X. and Persic, M. and Poutanen, J. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Garcia, J. Rodriguez and Saito, T. and Saito, K. and Satalecka, K. and Scapin, V. and Schultz, C. and Schweizer, T. and Shore, S. N. and Sillanpaa, A. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Stamerra, A. and Steinbring, T. and Strzys, M. and Takalo, L. and Takami, H. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Thaele, J. and Torres, D. F. and Toyama, T. and Treves, A. and Verguilov, V. and Vovk, I. and Will, M. and Zanin, R. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Gerard, L. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, Nils and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Park, N. and Petry, D. and Pohl, Martin and Popkow, A. and Ragan, K. and Ratliff, G. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Vince, O. and Fuhrmann, L. and Angelakis, E. and Karamanavis, V. and Myserlis, I. and Krichbaum, T. P. and Zensus, J. A. and Ungerechts, H. and Sievers, A. and Bachev, R. and Boettcher, Markus and Chen, W. P. and Damljanovic, G. and Eswaraiah, C. and Guver, T. and Hovatta, T. and Hughes, Z. and Ibryamov, S. I. and Joner, M. D. and Jordan, B. and Jorstad, S. G. and Joshi, M. and Kataoka, J. and Kurtanidze, O. M. and Kurtanidze, S. O. and Lahteenmaki, A. and Latev, G. and Lin, H. C. and Larionov, V. M. and Mokrushina, A. A. and Morozova, D. A. and Nikolashvili, M. G. and Raiteri, C. M. and Ramakrishnan, V. and Readhead, A. C. R. and Sadun, A. C. and Sigua, L. A. and Semkov, E. H. and Strigachev, A. and Tammi, J. and Tornikoski, M. and Troitskaya, Y. V. and Troitsky, I. S. and Villata, M.}, title = {First NuSTAR observations of MRK 501 within a radio to TeV multi-instrument campaign}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {812}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {NuSTAR Team, MAGIC Collaboration, VERITAS Collaboration, F-Gamma Consortium}, issn = {0004-637X}, doi = {10.1088/0004-637X/812/1/65}, pages = {22}, year = {2015}, abstract = {We report on simultaneous broadband observations of the TeV-emitting blazar Markarian 501 between 2013 April 1 and August 10, including the first detailed characterization of the synchrotron peak with Swift and NuSTAR. During the campaign, the nearby BL Lac object was observed in both a quiescent and an elevated state. The broadband campaign includes observations with NuSTAR, MAGIC, VERITAS, the Fermi Large Area Telescope, Swift X-ray Telescope and UV Optical Telescope, various ground-based optical instruments, including the GASP-WEBT program, as well as radio observations by OVRO, Metsahovi, and the F-Gamma consortium. Some of the MAGIC observations were affected by a sand layer from the Saharan desert, and had to be corrected using event-by-event corrections derived with a Light Detection and Ranging (LIDAR) facility. This is the first time that LIDAR information is used to produce a physics result with Cherenkov Telescope data taken during adverse atmospheric conditions, and hence sets a precedent for the current and future ground-based gamma-ray instruments. The NuSTAR instrument provides unprecedented sensitivity in hard X-rays, showing the source to display a spectral energy distribution (SED) between 3 and 79 keV consistent with a log-parabolic spectrum and hard X-ray variability on hour timescales. None (of the four extended NuSTAR observations) show evidence of the onset of inverse-Compton emission at hard X-ray energies. We apply a single-zone equilibrium synchrotron self-Compton (SSC) model to five simultaneous broadband SEDs. We find that the SSC model can reproduce the observed broadband states through a decrease in the magnetic field strength coinciding with an increase in the luminosity and hardness of the relativistic leptons responsible for the high-energy emission.}, language = {en} } @article{AleksicAnsoldiAntonellietal.2015, author = {Aleksic, J. and Ansoldi, S. and Antonelli, L. A. and Antoranz, P. and Babic, A. and Bangale, P. and de Almeida, U. Barres and Barrio, J. A. and Becerra Gonzalez, J. and Bednarek, W. and Berger, K. and Bernardini, E. and Biland, A. and Blanch Bigas, O. and Bock, R. K. and Bonnefoy, S. and Bonnoli, G. and Borracci, F. and Bretz, T. and Carmona, E. and Carosi, A. and Fidalgo, D. Carreto and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Caneva, G. and De Lotto, B. and Delgado Mendez, C. and Doert, M. and Dominguez, A. and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Einecke, S. and Eisenacher, D. and Elsaesser, D. and Farina, E. and Ferenc, D. and Fonseca, M. V. and Font, L. and Frantzen, K. and Fruck, C. and Garcia Lopez, R. J. and Garczarczyk, M. and Garrido Terrats, D. and Gaug, M. and Giavitto, G. and Godinovic, N. and Gonzalez Munoz, A. and Gozzini, S. R. and Hadamek, A. and Hadasch, D. and Herrero, A. and Hildebrand, D. and Hose, J. and Hrupec, D. and Idec, W. and Kadenius, V. and Kellermann, H. and Knoetig, M. L. and Krause, J. and Kushida, J. and La Barbera, A. and Lelas, D. and Lewandowska, N. and Lindfors, E. and Lombardi, S. and Lopez, M. and Lopez-Coto, R. and Lopez-Oramas, A. and Lorenz, E. and Lozano, I. and Makariev, M. and Mallot, K. and Maneva, G. and Mankuzhiyil, N. and Mannheim, K. and Maraschi, L. and Marcote, B. and Mariotti, M. and Martinez, M. and Mazin, D. and Menzel, U. and Meucci, M. and Miranda, J. M. and Mirzoyan, R. and Moralejo, A. and Munar-Adrover, P. and Nakajima, D. and Niedzwiecki, A. and Nilsson, K. and Nowak, N. and Orito, R. and Overkemping, A. and Paiano, S. and Palatiello, M. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Paredes-Fortuny, X. and Partini, S. and Persic, M. and Prada, F. and Moroni, P. G. Prada and Prandini, E. and Preziuso, S. and Puljak, I. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Garcia, J. Rodriguez and Ruegamer, S. and Saggion, A. and Saito, T. and Saito, K. and Salvati, M. and Satalecka, K. and Scalzotto, V. and Scapin, V. and Schultz, C. and Schweizer, T. and Shore, S. N. and Sillanpaa, A. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Spanier, F. and Stamatescu, V. and Stamerra, A. and Steinbring, T. and Storz, J. and Sun, S. and Suric, T. and Takalo, L. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Thaele, J. and Tibolla, O. and Torres, D. F. and Toyama, T. and Treves, A. and Uellenbeck, M. and Vogler, P. and Wagner, R. M. and Zandanel, F. and Zanin, R. and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Bouvier, A. and Bugaev, V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Collins-Hughes, E. and Cui, W. and Duke, C. and Dumm, J. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Johnson, C. A. and Kaaret, P. and Kertzman, M. and Kieda, D. and Krawczynski, H. and Lang, M. J. and Madhavan, A. S. and Maier, G. and Majumdar, P. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pichel, A. and Pohl, Manula and Popkow, A. and Prokoph, H. and Quinn, J. and Rajotte, J. and Ratliff, G. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sembroski, G. H. and Shahinyan, K. and Sheidaei, F. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Tyler, J. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Weekes, T. C. and Welsing, R. and Williams, D. A. and Zajczyk, A. and Zitzer, B. and Villata, M. and Raiteri, C. M. and Ajello, M. and Perri, M. and Aller, H. D. and Aller, M. F. and Larionov, V. M. and Efimova, N. V. and Konstantinova, T. S. and Kopatskaya, E. N. and Chen, W. P. and Koptelova, E. and Hsiao, H. Y. and Kurtanidze, O. M. and Nikolashvili, M. G. and Kimeridze, G. N. and Jordan, B. and Leto, Paolo and Buemi, C. S. and Trigilio, C. and Umana, G. and Lahteenmaki, A. and Nieppola, E. and Tornikoski, M. and Sainio, J. and Kadenius, V. and Giroletti, M. and Cesarini, A. and Fuhrmann, L. and Kovalev, Yu. A. and Kovalev, Y. Y.}, title = {Multiwavelength observations of Mrk 501 in 2008}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {573}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {MAGIC Collaboration, VERITAS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201322906}, pages = {12}, year = {2015}, abstract = {Context. Blazars are variable sources on various timescales over a broad energy range spanning from radio to very high energy (>100 GeV, hereafter VHE). Mrk 501 is one of the brightest blazars at TeV energies and has been extensively studied since its first VHE detection in 1996. However, most of the gamma-ray studies performed on Mrk 501 during the past years relate to flaring activity, when the source detection and characterization with the available gamma-ray instrumentation was easier to perform. Aims. Our goal is to characterize the source gamma-ray emission in detail, together with the radio-to-X-ray emission, during the non-flaring (low) activity, which is less often studied than the occasional flaring (high) activity. Methods. We organized a multiwavelength (MW) campaign on Mrk 501 between March and May 2008. This multi-instrument effort included the most sensitive VHE gamma-ray instruments in the northern hemisphere, namely the imaging atmospheric Cherenkov telescopes MAGIC and VERITAS, as well as Swift, RXTE, the F-GAMMA, GASP-WEBT, and other collaborations and instruments. This provided extensive energy and temporal coverage of Mrk 501 throughout the entire campaign. Results. Mrk 501 was found to be in a low state of activity during the campaign, with a VHE flux in the range of 10\%-20\% of the Crab nebula flux. Nevertheless, significant flux variations were detected with various instruments, with a trend of increasing variability with energy and a tentative correlation between the X-ray and VHE fluxes. The broadband spectral energy distribution during the two different emission states of the campaign can be adequately described within the homogeneous one-zone synchrotron self-Compton model, with the (slightly) higher state described by an increase in the electron number density. Conclusions. The one-zone SSC model can adequately describe the broadband spectral energy distribution of the source during the two months covered by the MW campaign. This agrees with previous studies of the broadband emission of this source during flaring and non-flaring states. We report for the first time a tentative X-ray-to-VHE correlation during such a low VHE activity. Although marginally significant, this positive correlation between X-ray and VHE, which has been reported many times during flaring activity, suggests that the mechanisms that dominate the X-ray/VHE emission during non-flaring-activity are not substantially different from those that are responsible for the emission during flaring activity.}, language = {en} } @article{MartinezGonzalezPastorYabarLaggetal.2016, author = {Martinez Gonzalez, M. J. and Pastor Yabar, A. and Lagg, A. and Asensio Ramos, A. and Collados Vera, M. and Solanki, S. K. and Balthasar, H. and Berkefeld, T. and Denker, Carsten and Doerr, H. P. and Feller, A. and Franz, M. and Gonz{\´a}lez Manrique, Sergio Javier and Hofmann, A. and Kneer, F. and Kuckein, Christoph and Louis, R. and von der L{\"u}he, O. and Nicklas, H. and Orozco, D. and Rezaei, R. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Verma, Meetu and Waldman, T. and Volkmer, R.}, title = {Inference of magnetic fields in the very quiet Sun}, series = {Journal of geophysical research : Earth surface}, volume = {596}, journal = {Journal of geophysical research : Earth surface}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201628449}, pages = {11}, year = {2016}, abstract = {Context. Over the past 20 yr, the quietest areas of the solar surface have revealed a weak but extremely dynamic magnetism occurring at small scales (<500 km), which may provide an important contribution to the dynamics and energetics of the outer layers of the atmosphere. Understanding this magnetism requires the inference of physical quantities from high-sensitivity spectro-polarimetric data with high spatio-temporal resolution. Aims. We present high-precision spectro-polarimetric data with high spatial resolution (0.4") of the very quiet Sun at 1.56 mu m obtained with the GREGOR telescope to shed some light on this complex magnetism. Methods. We used inversion techniques in two main approaches. First, we assumed that the observed profiles can be reproduced with a constant magnetic field atmosphere embedded in a field-free medium. Second, we assumed that the resolution element has a substructure with either two constant magnetic atmospheres or a single magnetic atmosphere with gradients of the physical quantities along the optical depth, both coexisting with a global stray-light component. Results. Half of our observed quiet-Sun region is better explained by magnetic substructure within the resolution element. However, we cannot distinguish whether this substructure comes from gradients of the physical parameters along the line of sight or from horizontal gradients (across the surface). In these pixels, a model with two magnetic components is preferred, and we find two distinct magnetic field populations. The population with the larger filling factor has very weak (similar to 150 G) horizontal fields similar to those obtained in previous works. We demonstrate that the field vector of this population is not constrained by the observations, given the spatial resolution and polarimetric accuracy of our data. The topology of the other component with the smaller filling factor is constrained by the observations for field strengths above 250 G: we infer hG fields with inclinations and azimuth values compatible with an isotropic distribution. The filling factors are typically below 30\%. We also find that the flux of the two polarities is not balanced. From the other half of the observed quiet-Sun area similar to 50\% are two-lobed Stokes V profiles, meaning that 23\% of the field of view can be adequately explained with a single constant magnetic field embedded in a non-magnetic atmosphere. The magnetic field vector and filling factor are reliable inferred in only 50\% based on the regular profiles. Therefore, 12\% of the field of view harbour hG fields with filling factors typically below 30\%. At our present spatial resolution, 70\% of the pixels apparently are non-magnetised.}, language = {en} } @article{VermaDenkerBalthasaretal.2016, author = {Verma, Meetu and Denker, Carsten and Balthasar, H. and Kuckein, Christoph and Gonz{\´a}lez Manrique, Sergio Javier and Sobotka, M. and Gonzalez, N. Bello and Hoch, S. and Diercke, Andrea and Kummerow, Philipp and Berkefeld, T. and Collados Vera, M. and Feller, A. and Hofmann, A. and Kneer, F. and Lagg, A. and L{\"o}hner-B{\"o}ttcher, J. and Nicklas, H. and Pastor Yabar, A. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Schubert, M. and Sigwarth, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Horizontal flow fields in and around a small active region The transition period between flux emergence and decay}, series = {Polymers}, volume = {596}, journal = {Polymers}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201628380}, pages = {12}, year = {2016}, abstract = {Context. The solar magnetic field is responsible for all aspects of solar activity. Thus, emergence of magnetic flux at the surface is the first manifestation of the ensuing solar activity. Aims. Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region. Methods. The small active region NOAA 12118 emerged on 2014 July 17 and was observed one day later with the 1.5-m GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Perot Interferometer (GFPI) were complemented by synoptic line-of-sight magnetograms and continuum images obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator (DAVE), respectively. Morphological image processing was employed to measure the photometric and magnetic area, magnetic flux, and the separation profile of the emerging flux region during its evolution. Results. The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days provides a comprehensive view of growth and decay. It traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 km s(-1) is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns such as outward motions in the outer part of the two major pores, a diverging feature near the trailing pore marking the site of upwelling plasma and flux emergence, and low velocities in the interior of dark pores. We detected many elongated rapidly expanding granules between the two major polarities, with dimensions twice as large as the normal granules.}, language = {en} } @article{GonzalezManriqueKuckeinPastorYabaretal.2016, author = {Gonzalez Manrique, Sergio Javier and Kuckein, Christoph and Pastor Yabar, A. and Collados Vera, M. and Denker, Carsten and Fischer, C. E. and G{\"o}m{\"o}ry, P. and Diercke, Andrea and Gonzalez, N. Bello and Schlichenmaier, R. and Balthasar, H. and Berkefeld, T. and Feller, A. and Hoch, S. and Hofmann, A. and Kneer, F. and Lagg, A. and Nicklas, H. and Orozco Suarez, D. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Verma, Meetu and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Fitting peculiar spectral profiles in He I 10830 angstrom absorption features}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201512433}, pages = {1057 -- 1063}, year = {2016}, abstract = {The new generation of solar instruments provides better spectral, spatial, and temporal resolution for a better understanding of the physical processes that take place on the Sun. Multiple-component profiles are more commonly observed with these instruments. Particularly, the He i 10830 triplet presents such peculiar spectral profiles, which give information on the velocity and magnetic fine structure of the upper chromosphere. The purpose of this investigation is to describe a technique to efficiently fit the two blended components of the He i 10830 triplet, which are commonly observed when two atmospheric components are located within the same resolution element. The observations used in this study were taken on 2015 April 17 with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) attached to the 1.5-m GREGOR solar telescope, located at the Observatorio del Teide, Tenerife, Spain. We apply a double-Lorentzian fitting technique using Levenberg-Marquardt least-squares minimization. This technique is very simple and much faster than inversion codes. Line-of-sight Doppler velocities can be inferred for a whole map of pixels within just a few minutes. Our results show sub-and supersonic downflow velocities of up to 32 km s(-1) for the fast component in the vicinity of footpoints of filamentary structures. The slow component presents velocities close to rest. (C) 2016 WILEY-VCH Verlag GmbH\& Co. KGaA, Weinheim}, language = {en} } @article{VermaDenkerBoehmetal.2016, author = {Verma, Meetu and Denker, Carsten and B{\"o}hm, F. and Balthasar, H. and Fischer, C. E. and Kuckein, Christoph and Gonzalez, N. Bello and Berkefeld, T. and Collados Vera, M. and Diercke, Andrea and Feller, A. and Gonzalez Manrique, Sergio Javier and Hofmann, A. and Lagg, A. and Nicklas, H. and Orozco Suarez, D. and Pator Yabar, A. and Rezaei, R. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Flow and magnetic field properties in the trailing sunspots of active region NOAA 12396}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201612447}, pages = {1090 -- 1098}, year = {2016}, abstract = {Improved measurements of the photospheric and chromospheric three-dimensional magnetic and flow fields are crucial for a precise determination of the origin and evolution of active regions. We present an illustrative sample of multi-instrument data acquired during a two-week coordinated observing campaign in August 2015 involving, among others, the GREGOR solar telescope (imaging and near-infrared spectroscopy) and the space missions Solar Dynamics Observatory (SDO) and Interface Region Imaging Spectrograph (IRIS). The observations focused on the trailing part of active region NOAA 12396 with complex polarity inversion lines and strong intrusions of opposite polarity flux. The GREGOR Infrared Spectrograph (GRIS) provided Stokes IQUV spectral profiles in the photospheric Si i.1082.7 nm line, the chromospheric He I lambda 1083.0 nm triplet, and the photospheric Ca I lambda 1083.9 nm line. Carefully calibrated GRIS scans of the active region provided maps of Doppler velocity and magnetic field at different atmospheric heights. We compare quick-look maps with those obtained with the " Stokes Inversions based on Response functions" (SIR) code, which furnishes deeper insight into the magnetic properties of the region. We find supporting evidence that newly emerging flux and intruding opposite polarity flux are hampering the formation of penumbrae, i.e., a penumbra fully surrounding a sunspot is only expected after cessation of flux emergence in proximity to the sunspots. (C) 2016 WILEY-VCH Verlag GmbH\& Co.KGaA, Weinheim}, language = {en} } @article{AbdoAckermannAjelloetal.2011, author = {Abdo, A. A. and Ackermann, Margit and Ajello, M. and Allafort, A. J. and Baldini, L. and Ballet, J. and Barbiellini, G. and Baring, M. G. and Bastieri, D. and Bechtol, K. C. and Bellazzini, R. and Berenji, B. and Blandford, R. D. and Bloom, E. D. and Bonamente, E. and Borgland, A. W. and Bouvier, A. and Brandt, T. J. and Bregeon, Johan and Brez, A. and Brigida, M. and Bruel, P. and Buehler, R. and Buson, S. and Caliandro, G. A. and Cameron, R. A. and Cannon, A. and Caraveo, P. A. and Carrigan, Svenja and Casandjian, J. M. and Cavazzuti, E. and Cecchi, C. and Celik, O. and Charles, E. and Chekhtman, A. and Cheung, C. C. and Chiang, J. and Ciprini, S. and Claus, R. and Cohen-Tanugi, J. and Conrad, Jan and Cutini, S. and Dermer, C. D. and de Palma, F. and do Couto e Silva, E. and Drell, P. S. and Dubois, R. and Dumora, D. and Favuzzi, C. and Fegan, S. J. and Ferrara, E. C. and Focke, W. B. and Fortin, P. and Frailis, M. and Fuhrmann, L. and Fukazawa, Y. and Funk, S. and Fusco, P. and Gargano, F. and Gasparrini, D. and Gehrels, N. and Germani, S. and Giglietto, N. and Giordano, F. and Giroletti, M. and Glanzman, T. and Godfrey, G. and Grenier, I. A. and Guillemot, L. and Guiriec, S. and Hayashida, M. and Hays, E. and Horan, D. and Hughes, R. E. and Johannesson, G. and Johnson, A. S. and Johnson, W. N. and Kadler, M. and Kamae, T. and Katagiri, H. and Kataoka, J. and Knoedlseder, J. and Kuss, M. and Lande, J. and Latronico, L. and Lee, S. -H. and Lemoine-Goumard, M. and Longo, F. and Loparco, F. and Lott, B. and Lovellette, M. N. and Lubrano, P. and Madejski, G. M. and Makeev, A. and Max-Moerbeck, W. and Mazziotta, Mario Nicola and McEnery, J. E. and Mehault, J. and Michelson, P. F. and Mitthumsiri, W. and Mizuno, T. and Moiseev, A. A. and Monte, C. and Monzani, M. E. and Morselli, A. and Moskalenko, I. V. and Murgia, S. and Naumann-Godo, M. and Nishino, S. and Nolan, P. L. and Norris, J. P. and Nuss, E. and Ohsugi, T. and Okumura, A. and Omodei, N. and Orlando, E. and Ormes, J. F. and Paneque, D. and Panetta, J. H. and Parent, D. and Pavlidou, V. and Pearson, T. J. and Pelassa, V. and Pepe, M. and Pesce-Rollins, M. and Piron, F. and Porter, T. A. and Raino, S. and Rando, R. and Razzano, M. and Readhead, A. and Reimer, A. and Reimer, O. and Richards, J. L. and Ripken, J. and Ritz, S. and Roth, M. and Sadrozinski, H. F. -W. and Sanchez, D. and Sander, A. and Scargle, J. D. and Sgro, C. and Siskind, E. J. and Smith, P. D. and Spandre, G. and Spinelli, P. and Stawarz, L. and Stevenson, M. and Strickman, M. S. and Sokolovsky, K. V. and Suson, D. J. and Takahashi, H. and Takahashi, T. and Tanaka, T. and Thayer, J. B. and Thayer, J. G. and Thompson, D. J. and Tibaldo, L. and Torres, F. and Tosti, G. and Tramacere, A. and Uchiyama, Y. and Usher, T. L. and Vandenbroucke, J. and Vasileiou, V. and Vilchez, N. and Vitale, V. and Waite, A. P. and Wang, P. and Wehrle, A. E. and Winer, B. L. and Wood, K. S. and Yang, Z. and Ylinen, T. and Zensus, J. A. and Ziegler, M. and Aleksic, J. and Antonelli, L. A. and Antoranz, P. and Backes, Michael and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Berdyugin, A. and Berger, K. and Bernardini, E. and Biland, A. and Blanch Bigas, O. and Bock, R. K. and Boller, A. and Bonnoli, G. and Bordas, Pol and Tridon, D. Borla and Bosch-Ramon, Valentin and Bose, D. and Braun, I. and Bretz, T. and Camara, M. and Carmona, E. and Carosi, A. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Dazzi, F. and de Angelis, A. and del Pozo, E. De Cea and De Lotto, B. and De Maria, M. and De Sabata, F. and Mendez, C. Delgado and Ortega, A. Diago and Doert, M. and Dominguez, A. and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Elsaesser, D. and Ferenc, D. and Fonseca, M. V. and Font, L. and Lopen, R. J. Garcia and Garczarczyk, M. and Gaug, M. and Giavitto, G. and Godinovi, N. and Hadasch, D. and Herrero, A. and Hildebrand, D. and Hoehne-Moench, D. and Hose, J. and Hrupec, D. and Jogler, T. and Klepser, S. and Kraehenbuehl, T. and Kranich, D. and Krause, J. and La Barbera, A. and Leonardo, E. and Lindfors, E. and Lombardi, S. and Lopez, M. and Lorenz, E. and Majumdar, P. and Makariev, E. and Maneva, G. and Mankuzhiyil, N. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Mazin, D. and Meucci, M. and Miranda, J. M. and Mirzoyan, R. and Miyamoto, H. and Moldon, J. and Moralejo, A. and Nieto, D. and Nilsson, K. and Orito, R. and Oya, I. and Paoletti, R. and Paredes, J. M. and Partini, S. and Pasanen, M. and Pauss, F. and Pegna, R. G. and Perez-Torres, M. A. and Persic, M. and Peruzzo, J. and Pochon, J. and Moroni, P. G. Prada and Prada, F. and Prandini, E. and Puchades, N. and Puljak, I. and Reichardt, T. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Rissi, M. and Ruegamer, S. and Saggion, A. and Saito, K. and Saito, T. Y. and Salvati, M. and Sanchez-Conde, M. and Satalecka, K. and Scalzotto, V. and Scapin, V. and Schultz, C. and Schweizer, T. and Shayduk, M. and Shore, S. N. and Sierpowska-Bartosik, A. and Sillanpaa, A. and Sitarek, J. and Sobczynska, D. and Spanier, F. and Spiro, S. and Stamerra, A. and Steinke, B. and Storz, J. and Strah, N. and Struebig, J. C. and Suric, T. and Takalo, L. O. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Vankov, H. and Wagner, R. M. and Weitzel, Q. and Zabalza, V. and Zandanel, F. and Zanin, R. and Acciari, V. A. and Arlen, T. and Aune, T. and Benbow, W. and Boltuch, D. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Cannon, A. and Cesarini, A. and Ciupik, L. and Cui, W. and Dickherber, R. and Errando, M. and Falcone, A. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Godambe, S. and Grube, J. and Guenette, R. and Gyuk, G. and Hanna, D. and Holder, J. and Huang, D. and Hui, C. M. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kieda, D. and Konopelko, A. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and McCutcheon, M. and Moriarty, P. and Mukherjee, R. and Ong, R. and Otte, N. and Pandel, D. and Perkins, J. S. and Pichel, A. and Pohl, M. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Rovero, A. C. and Schroedter, M. and Sembroski, G. H. and Senturk, G. D. and Steele, D. and Swordy, S. P. and Tesic, G. and Theiling, M. and Thibadeau, S. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Wood, M. and Zitzer, B. and Villata, M. and Raiteri, C. M. and Aller, H. D. and Aller, M. F. and Arkharov, A. A. and Blinov, D. A. and Calcidese, P. and Chen, W. P. and Efimova, N. V. and Kimeridze, G. and Konstantinova, T. S. and Kopatskaya, E. N. and Koptelova, E. and Kurtanidze, O. M. and Kurtanidze, S. O. and Lahteenmaki, A. and Larionov, V. M. and Larionova, E. G. and Larionova, L. V. and Ligustri, R. and Morozova, D. A. and Nikolashvili, M. G. and Sigua, L. A. and Troitsky, I. S. and Angelakis, E. and Capalbi, M. and Carraminana, A. and Carrasco, L. and Cassaro, P. and de la Fuente, E. and Gurwell, M. A. and Kovalev, Y. Y. and Kovalev, Yu. A. and Krichbaum, T. P. and Krimm, H. A. and Leto, Paolo and Lister, M. L. and Maccaferri, G. and Moody, J. W. and Mori, Y. and Nestoras, I. and Orlati, A. and Pagani, C. and Pace, C. and Pearson, R. and Perri, M. and Piner, B. G. and Pushkarev, A. B. and Ros, E. and Sadun, A. C. and Sakamoto, T. and Tornikoski, M. and Yatsu, Y. and Zook, A.}, title = {Insights into the high-energy gamma-Ray emission of markarian 501 fromextensive multifrequency observations in the fermi era}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {727}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {Fermi-LAT Collaboration, MAGIC Collaboration, VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/727/2/129}, pages = {26}, year = {2011}, abstract = {We report on the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) gamma-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 +/- 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 +/- 0.14, and the softest one is 2.51 +/- 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size less than or similar to 0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (similar or equal to 10(44) erg s(-1)) constitutes only a small fraction (similar to 10(-3)) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude.}, language = {en} } @article{AbramowskiAceroAharonianetal.2012, author = {Abramowski, Attila and Acero, F. and Aharonian, Felix A. and Akhperjanian, A. G. and Anton, Gisela and Balzer, Arnim and Barnacka, Anna and de Almeida, U. Barres and Becherini, Yvonne and Becker, J. and Behera, B. and Bernl{\"o}hr, K. and Birsin, E. and Biteau, Jonathan and Bochow, A. and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Buesching, I. and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Charbonnier, A. and Chaves, Ryan C. G. and Cheesebrough, A. and Clapson, A. C. and Coignet, G. and Cologna, Gabriele and Conrad, Jan and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Drury, L. O'C. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Egberts, Kathrin and Eger, P. and Espigat, P. and Fallon, L. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gallant, Y. A. and Gast, H. and Gerard, L. and Gerbig, D. and Giebels, B. and Glicenstein, J. F. and Glueck, B. and Goret, P. and Goering, D. and Haeffner, S. and Hague, J. D. and Hampf, D. and Hauser, M. and Heinz, S. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hoffmann, A. and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and de Jager, O. C. and Jahn, C. and Jamrozy, M. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Keogh, D. and Khangulyan, D. and Khelifi, B. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Komin, Nu. and Kosack, K. and Kossakowski, R. and Laffon, H. and Lamanna, G. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, A. and Masbou, J. and Maurin, D. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Medina, M. C. and Mehault, J. and Moderski, R. and Moulin, E. and Naumann, C. L. and Naumann-Godo, M. and de Naurois, M. and Nedbal, D. and Nekrassov, D. and Nguyen, N. and Nicholas, B. and Niemiec, J. and Nolan, S. J. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Arribas, M. Paz and Pedaletti, G. and Pelletier, G. and Petrucci, P. -O. and Pita, S. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raue, M. and Rayner, S. M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Ripken, J. and Rob, L. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Ruppel, J. and Sahakian, V. and Sanchez, David M. and Santangelo, A. and Schlickeiser, R. and Schoeck, F. M. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sheidaei, F. and Skilton, J. L. and Sol, H. and Spengler, G. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Terrier, R. and Tluczykont, M. and Valerius, K. and van Eldik, C. and Vasileiadis, G. and Venter, C. and Vialle, J. P. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorobiov, S. and Vorster, M. and Wagner, S. J. and Ward, M. and White, R. and Wierzcholska, A. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S. and Aleksic, J. and Antonelli, L. A. and Antoranz, P. and Backes, Michael and Barrio, J. A. and Bastieri, D. and Becerra Gonzalez, J. and Bednarek, W. and Berdyugin, A. and Berger, K. and Bernardini, E. and Biland, A. and Blanch Bigas, O. and Bock, R. K. and Boller, A. and Bonnoli, G. and Tridon, D. Borla and Braun, I. and Bretz, T. and Canellas, A. and Carmona, E. and Carosi, A. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Cossio, L. and Covino, S. and Dazzi, F. and De Angelis, A. and De Cea del Pozo, E. and De Lotto, B. and Delgado Mendez, C. and Diago Ortega, A. and Doert, M. and Dominguez, A. and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Elsaesser, D. and Ferenc, D. and Fonseca, M. V. and Font, L. and Fruck, C. and Garcia Lopez, R. J. and Garczarczyk, M. and Garrido, D. and Giavitto, G. and Godinovic, N. and Hadasch, D. and Haefner, D. and Herrero, A. and Hildebrand, D. and Hoehne-Moench, D. and Hose, J. and Hrupec, D. and Huber, B. and Jogler, T. and Klepser, S. and Kraehenbuehl, T. and Krause, J. and La Barbera, A. and Lelas, D. and Leonardo, E. and Lindfors, E. and Lombardi, S. and Lopez, M. and Lorenz, E. and Makariev, M. and Maneva, G. and Mankuzhiyil, N. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Mazin, D. and Meucci, M. and Miranda, J. M. and Mirzoyan, R. and Miyamoto, H. and Moldon, J. and Moralejo, A. and Munar, P. and Nieto, D. and Nilsson, K. and Orito, R. and Oya, I. and Paneque, D. and Paoletti, R. and Pardo, S. and Paredes, J. M. and Partini, S. and Pasanen, M. and Pauss, F. and Perez-Torres, M. A. and Persic, M. and Peruzzo, L. and Pilia, M. and Pochon, J. and Prada, F. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Reichardt, I. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Ruegamer, S. and Saggion, A. and Saito, K. and Saito, T. Y. and Salvati, M. and Satalecka, K. and Scalzotto, V. and Scapin, V. and Schultz, C. and Schweizer, T. and Shayduk, M. and Shore, S. N. and Sillanpaa, A. and Sitarek, J. and Sobczynska, D. and Spanier, F. and Spiro, S. and Stamerra, A. and Steinke, B. and Storz, J. and Strah, N. and Suric, T. and Takalo, L. and Takami, H. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Thom, M. and Tibolla, O. and Torres, D. F. and Treves, A. and Vankov, H. and Vogler, P. and Wagner, R. M. and Weitzel, Q. and Zabalza, V. and Zandanel, F. and Zanin, R. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Errando, M. and Falcone, A. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hui, C. M. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and LeBohec, S. and Maier, G. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nunez, P. D. and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Prokoph, H. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Varlotta, A. and Vassiliev, V. V. and Vivier, M. and Wakely, S. P. and Weekes, T. C. and Williams, D. A. and Zitzer, B. and de Almeida, U. Barres and Cara, M. and Casadio, C. and Cheung, C. C. and McConville, W. and Davies, F. and Doi, A. and Giovannini, G. and Giroletti, M. and Hada, K. and Hardee, P. and Harris, D. E. and Junor, W. and Kino, M. and Lee, N. P. and Ly, C. and Madrid, J. and Massaro, F. and Mundell, C. G. and Nagai, H. and Perlman, E. S. and Steele, I. A. and Walker, R. C. and Wood, D. L.}, title = {The 2010 very high energy gamma-ray flare and 10 years ofmulti-wavelength oservations of M 87}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {746}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {HESS Collaboration, MAGIC Collaboration, VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/746/2/151}, pages = {18}, year = {2012}, abstract = {The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3-6) x 10(9) M-circle dot) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of tau(rise)(d) = (1.69 +/- 0.30) days and tau(decay)(d) = (0.611 +/- 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (similar to day), peak fluxes (Phi(>0.35 TeV) similar or equal to (1-3) x 10(-11) photons cm(-2) s(-1)), and VHE spectra. VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken similar to 3 days after the peak of the VHE gamma-ray emission reveal an enhanced flux from the core (flux increased by factor similar to 2; variability timescale <2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M 87, spanning from radio to VHE and including data from Hubble Space Telescope, Liverpool Telescope, Very Large Array, and European VLBI Network, is used to further investigate the origin of the VHE gamma-ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kiloparsec jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE gamma-ray emission from M 87 are reviewed in the light of the new data.}, language = {en} } @article{AhnenAnsoldiAntonellietal.2018, author = {Ahnen, M. L. and Ansoldi, S. and Antonelli, L. A. and Arcaro, C. and Babie, A. and Banerjee, B. and Bangale, P. and de Almeida, U. Barres and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Bernardini, E. and Berti, A. and Biasuzzi, B. and Biland, A. and Blanch, O. and Bonnefoy, S. and Bonnoli, G. and Borracci, F. and Carosi, R. and Carosi, A. and Chatterjee, A. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Cumani, P. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Lotto, B. and Wilhelmi, E. de Ona and Di Pierro, F. and Doert, M. and Dominguez, A. and Prester, D. Dominis and Dorner, D. and Doro, M. and Einecke, S. and Glawion, D. Eisenacher and Elsaesser, D. and Engelkemeier, M. and Ramazani, V. Fallah and Fernandez-Barra, A. and Fidalgo, D. and Fonseca, M. V. and Font, L. and Fruck, C. and Galindo, D. and Lopez, R. J. Garcia and Garczarczyk, M. and Gaug, M. and Giammaria, P. and Godinovie, N. and Gora, D. and Griffiths, S. and Guberman, D. and Hadasch, D. and Hahn, A. and Hassan, T. and Hayashida, M. and Herrera, J. and Hose, J. and Hrupec, D. and Hughes, G. and Ishio, K. and Konno, Y. and Kubo, H. and Kushida, J. and Kuvezdie, D. and Lelas, D. and Lindfors, E. and Lombardi, S. and Longo, F. and Lopez, M. and Lopez-Oramas, A. and Majumdar, P. and Makariev, M. and Maneva, G. and Manganaro, M. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Mazin, D. and Menzel, U. and Minev, M. and Mirzoyan, R. and Moralejo, A. and Moreno, V. and Moretti, E. and Munar-Adrover, P. and Neustroev, V. and Niedzwiecki, A. and Rosillo, M. Nievas and Nilsson, K. and Nishijima, K. and Noda, K. and Nogues, L. and Paiano, S. and Palacio, J. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Paredes-Fortuny, X. and Pedaletti, G. and Peresano, M. and Perri, L. and Persic, M. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Garcia, J. R. and Reichardt, I. and Rhode, W. and Riti, M. and Rico, J. and Saito, T. and Satalecka, K. and Schroeder, S. and Schweizer, T. and Shore, S. N. and Sillanpaa, A. and Sitarek, J. and Sobczynskall, D. and Stamerra, A. and Strzys, M. and Surie, T. and Takalo, L. and Tavecchio, F. and Temnikov, P. and Terzie, T. and Tescaro, D. and Teshima, M. and Torres, D. F. and Torres-Alla, N. and Treves, A. and Vanzo, G. and Acosta, M. Vazquez and Vovk, I. and Ward, J. E. and Will, M. and Wu, M. H. and Zarie, D. and Abdalla, Hassan E. and Abramowski, A. and Aharonian, Felix A. and Benkhali, F. Ait and Akhperjanian, A. G. and Andersson, T. and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Arrieta, M. and Aubert, P. and Backes, M. and Balzer, A. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernhard, S. and Bernlohr, K. and Blackwell, R. and Bottcher, M. and Boisson, C. and Bolmont, J. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Btichele, M. and Bulik, T. and Capasso, M. and Carr, J. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chalme-Calvet, R. and Chaves, R. C. G. and Chen, A. and Chevalier, J. and Chretien, M. and Coffaro, M. and Colafrancesco, S. and Cologna, G. and Condon, B. and Conrad, J. and Cui, Y. and Davids, I. D. and Decock, J. and Degrange, B. and Dei, C. and Devin, J. and Dewilt, P. and Dirson, L. and Djannati-Atai, A. and Domainko, W. and Donath, A. and Dutson, K. and Dyks, J. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, S. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Forster, A. and Funk, S. and Ftifiling, M. and Gabici, S. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschal, D. and Goya, A. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hinton, J. A. and Hofmann, W. and Hoischen, Clemens and Holler, M. and Horns, D. and Ivascenko, A. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jankowsky, D. and Jankowsky, F. and Jingo, M. and Jogler, T. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzyfiski, K. and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and Kieffer, M. and King, J. and Klepser, S. and Klochkov, D. and Kluiniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M. and Krtiger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lees, J. -P. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lorentz, M. and Liu, R. and Lopez-Coto, R. and Lypova, I. and Marandon, V. and Marcowith, A. and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Meyer, M. and Mitche, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Mora, K. and Moulin, E. and Murach, T. and Nakashima, S. and De Naurois, M. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ott, S. and Ohm, S. and Ostrowski, M. and Oya, I. and Padovani, M. and Panter, M. and Parsons, R. D. and Pekeur, N. W. and Pelletier, G. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Pie, Q. and Pita, S. and Poon, H. and Prokhorov, D. and Prokoph, H. and Ptffilhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Reimer, A. and Reimer, O. and Renaud, M. and De Los Reyes, R. and Richter, S. and Rieger, F. and Romoli, C. and Rowell, G. and Rudak, B. and Rulten, C. B. and Safi-Harb, S. and Sahakian, V. and Saito, S. and Salek, D. and Sanchez, D. A. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schtissler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Settimo, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Simoni, R. and So, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stycz, K. and Sushch, I. and Takahashi, T. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and Van der Walt, D. J. and Van Eldik, C. and Van Rensburg, C. and Van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Vok, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, A. and Willmann, P. and Wornlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zywuckan, N.}, title = {Constraints on particle acceleration in SS433/W50 from MAGIC and HESS observations}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {612}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboratio MAGIC Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731169}, pages = {8}, year = {2018}, abstract = {Context. The large jet kinetic power and non-thermal processes occurring in the microquasar SS 433 make this source a good candidate for a very high-energy (VHE) gamma-ray emitter. Gamma-ray fluxes above the sensitivity limits of current Cherenkov telescopes have been predicted for both the central X-ray binary system and the interaction regions of SS 433 jets with the surrounding W50 nebula. Non-thermal emission at lower energies has been previously reported, indicating that efficient particle acceleration is taking place in the system. Aims. We explore the capability of SS 433 to emit VHE gamma rays during periods in which the expected flux attenuation due to periodic eclipses (P-orb similar to 13.1 days) and precession of the circumstellar disk (P-pre similar to 162 days) periodically covering the central binary system is expected to be at its minimum. The eastern and western SS 433/W50 interaction regions are also examined using the whole data set available. We aim to constrain some theoretical models previously developed for this system with our observations. Methods. We made use of dedicated observations from the Major Atmospheric Gamma Imaging Cherenkov telescopes (MAGIC) and High Energy Spectroscopic System (H.E.S.S.) of SS 433 taken from 2006 to 2011. These observation were combined for the first time and accounted for a total effective observation time of 16.5 h, which were scheduled considering the expected phases of minimum absorption of the putative VHE emission. Gamma-ray attenuation does not affect the jet/medium interaction regions. In this case, the analysis of a larger data set amounting to similar to 40-80 h, depending on the region, was employed. Results. No evidence of VHE gamma-ray emission either from the central binary system or from the eastern/western interaction regions was found. Upper limits were computed for the combined data set. Differential fluxes from the central system are found to be less than or similar to 10(-12)-10(-13) TeV-1 cm(-2) s(-1) in an energy interval ranging from similar to few x 100 GeV to similar to few TeV. Integral flux limits down to similar to 10(-12)-10(-13) ph cm(-2) s(-1) and similar to 10(-13)-10(-14) ph cm(-2) s(-1) are obtained at 300 and 800 GeV, respectively. Our results are used to place constraints on the particle acceleration fraction at the inner jet regions and on the physics of the jet/medium interactions. Conclusions. Our findings suggest that the fraction of the jet kinetic power that is transferred to relativistic protons must be relatively small in SS 433, q(p) <= 2.5 x 10(-5), to explain the lack of TeV and neutrino emission from the central system. At the SS 433/W50 interface, the presence of magnetic fields greater than or similar to 10 mu G is derived assuming a synchrotron origin for the observed X-ray emission. This also implies the presence of high-energy electrons with E-e up to 50 TeV, preventing an efficient production of gamma-ray fluxes in these interaction regions.}, language = {en} } @article{AhnenAnsoldiAntonellietal.2018, author = {Ahnen, M. L. and Ansoldi, S. and Antonelli, L. A. and Arcaro, C. and Babic, A. and Banerjee, B. and Bangale, P. and Barres de Almeida, U. and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Bernardini, E. and Berti, A. and Bhattacharyya, W. and Blanch, O. and Bonnoli, G. and Carosi, R. and Carosi, A. and Chatterjee, A. and Colak, S. M. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Cumani, P. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Lotto, B. and Delfino, M. and Delgado, Jose Miguel Martins and Di Pierro, F. and Doert, M. and Dominguez, A. and Prester, D. Dominis and Doro, M. and Glawion, D. Eisenacher and Engelkemeier, M. and Ramazani, V. Fallah and Fernandez-Barral, A. and Fidalgo, D. and Fonseca, M. V. and Font, L. and Fruck, C. and Galindo, D. and Lopez, R. J. Garcia and Garczarczyk, M. and Gaug, M. and Giammaria, P. and Godinovic, N. and Gora, D. and Guberman, D. and Hadasch, D. and Hahn, A. and Hassan, T. and Hayashida, M. and Herrera, J. and Hose, J. and Hrupec, D. and Ishio, K. and Konno, Y. and Kubo, H. and Kushida, J. and Kuvezdic, D. and Lelas, D. and Lindfors, E. and Lombardi, S. and Longo, F. and Lopez, M. and Maggio, C. and Majumdar, P. and Makariev, M. and Maneva, G. and Manganaro, M. and Maraschi, L. and Mariotti, M. and Martinez, M. and Mazin, D. and Menzel, U. and Minev, M. and Miranda, J. M. and Mirzoyan, R. and Moralejo, A. and Moreno, V. and Moretti, E. and Nagayoshi, T. and Neustroev, V. and Niedzwiecki, A. and Nievas Rosillo, M. and Nigro, C. and Nilsson, K. and Ninci, D. and Nishijima, K. and Noda, K. and Nogues, L. and Paiano, S. and Palacio, J. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Pedaletti, G. and Peresano, M. and Perri, L. and Persic, M. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Garcia, J. R. and Reichardt, I. and Ribo, M. and Rico, J. and Righi, C. and Rugliancich, A. and Saito, T. and Satalecka, K. and Schroeder, S. and Schweizer, T. and Shore, S. N. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Stamerra, A. and Strzys, M. and Suric, T. and Takalo, L. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Teshima, M. and Torres-Alba, N. and Treves, A. and Tsujimoto, S. and Vanzo, G. and Vazquez Acosta, M. and Vovk, I. and Ward, J. E. and Will, M. and Zaric, D. and Arbet-Engels, A. and Baack, D. and Balbo, M. and Biland, A. and Blank, M. and Bretz, T. and Bruegge, K. and Bulinski, M. and Buss, J. and Dmytriiev, A. and Dorner, D. and Einecke, S. and Elsaesser, D. and Herbst, T. and Hildebrand, D. and Kortmann, L. and Linhoff, L. and Mahlke, M. and Mannheim, K. and Mueller, S. A. and Neise, D. and Neronov, A. and Noethe, M. and Oberkirch, J. and Paravac, A. and Rhode, W. and Schleicher, B. and Schulz, F. and Sedlaczek, K. and Shukla, A. and Sliusar, V. and Walter, R. and Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buckley, J. H. and Bugaev, V. and Christiansen, J. L. and Cui, W. and Daniel, M. K. and Falcone, A. and Feng, Q. and Finley, J. P. and Gillanders, G. H. and Gueta, O. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Huetten, M. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pichel, A. and Pohl, Martin and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Sushch, Iurii and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhel, A. and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Perri, M. and Verrecchia, F. and Leto, C. and Villata, M. and Raiteri, C. M. and Jorstad, S. G. and Larionov, V. M. and Blinov, D. A. and Grishina, T. S. and Kopatskaya, E. N. and Larionova, E. G. and Nikiforova, A. A. and Morozova, D. A. and Troitskaya, Yu. V. and Troitsky, I. S. and Kurtanidze, O. M. and Nikolashvili, M. G. and Kurtanidze, S. O. and Kimeridze, G. N. and Chigladze, R. A. and Strigachev, A. and Sadun, A. C.}, title = {Extreme HBL behavior of Markarian 501 during 2012}, series = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, volume = {620}, journal = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {MAGIC Collaboration FACT Collaboration VERITAS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201833704}, pages = {23}, year = {2018}, abstract = {Aims. We aim to characterize the multiwavelength emission from Markarian 501 (Mrk 501), quantify the energy-dependent variability, study the potential multiband correlations, and describe the temporal evolution of the broadband emission within leptonic theoretical scenarios. Methods. We organized a multiwavelength campaign to take place between March and July of 2012. Excellent temporal coverage was obtained with more than 25 instruments, including the MAGIC, FACT and VERITAS Cherenkov telescopes, the instruments on board the Swift and Fermi spacecraft, and the telescopes operated by the GASP-WEBT collaboration. Results. Mrk 501 showed a very high energy (VHE) gamma-ray flux above 0.2 TeV of similar to 0.5 times the Crab Nebula flux (CU) for most of the campaign. The highest activity occurred on 2012 June 9, when the VHE flux was similar to 3 CU, and the peak of the high-energy spectral component was found to be at similar to 2 TeV. Both the X-ray and VHE gamma-ray spectral slopes were measured to be extremely hard, with spectral indices <2 during most of the observing campaign, regardless of the X-ray and VHE flux. This study reports the hardest Mrk 501 VHE spectra measured to date. The fractional variability was found to increase with energy, with the highest variability occurring at VHE. Using the complete data set, we found correlation between the X-ray and VHE bands; however, if the June 9 flare is excluded, the correlation disappears (significance <3 sigma) despite the existence of substantial variability in the X-ray and VHE bands throughout the campaign. Conclusions. The unprecedentedly hard X-ray and VHE spectra measured imply that their low- and high-energy components peaked above 5 keV and 0.5 TeV, respectively, during a large fraction of the observing campaign, and hence that Mrk 501 behaved like an extreme high-frequency-peaked blazar (EHBL) throughout the 2012 observing season. This suggests that being an EHBL may not be a permanent characteristic of a blazar, but rather a state which may change over time. The data set acquired shows that the broadband spectral energy distribution (SED) of Mrk 501, and its transient evolution, is very complex, requiring, within the framework of synchrotron self-Compton (SSC) models, various emission regions for a satisfactory description. Nevertheless the one-zone SSC scenario can successfully describe the segments of the SED where most energy is emitted, with a significant correlation between the electron energy density and the VHE gamma-ray activity, suggesting that most of the variability may be explained by the injection of high-energy electrons. The one-zone SSC scenario used reproduces the behavior seen between the measured X-ray and VHE gamma-ray fluxes, and predicts that the correlation becomes stronger with increasing energy of the X-rays.}, language = {en} } @article{AbeysekaraBenbowBirdetal.2018, author = {Abeysekara, A. U. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buckley, J. H. and Chromey, A. J. and Daniel, M. K. and Falcone, A. and Finley, J. P. and Fortson, L. and Furniss, Amy and Gent, A. and Gillanders, Gerald H. and Hanna, David and Hassan, T. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, Philip and Kar, P. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Richards, Gregory T. and Roache, E. and Sadeh, I. and Santander, Marcos and Schlenstedt, S. and Sembroski, G. H. and Sushch, Iurii and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Williamson, T. J. and Zitzer, B. and Acciari, V. A. and Ansoldi, S. and Antonelli, L. A. and Engels, A. Arbet and Baack, D. and Babic, A. and Banerjee, B. and de Almeida, U. Barres and Barrio, J. A. and Becerra Gonzalez, Josefa and Bednarek, Wlodek and Bernardini, Elisa and Berti, A. and Besenrieder, J. and Bhattacharyya, W. and Bigongiari, C. and Biland, A. and Blanch, O. and Bonnoli, G. and Busetto, G. and Carosi, R. and Ceribella, G. and Cikota, S. and Colak, S. M. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Lotto, B. and Delfino, M. and Delgado, J. and Di Pierro, F. and Do Souto Espinera, E. and Dominguez, A. and Prester, D. Dominis and Dorner, D. and Doro, M. and Einecke, S. and Elsaesser, D. and Ramazani, V. Fallah and Fattorini, A. and Fernandez-Barral, A. and Ferrara, G. and Fidalgo, D. and Foffano, L. and Fonseca, M. V. and Font, L. and Fruck, C. and Galindo, D. and Gallozzi, S. and Lopez, R. J. Garcia and Garczarczyk, M. and Gasparyan, S. and Gaug, Markus and Giammaria, P. and Godinovic, N. and Guberman, D. and Hadasch, D. and Hahn, A. and Herrera, J. and Hoang, J. and Hrupec, D. and Inoue, S. and Ishio, K. and Iwamura, Y. and Kubo, H. and Kushida, J. and Kuvezdic, D. and Lamastra, A. and Lelas, D. and Leone, Francesco and Lindfors, E. and Lombardi, S. and Longo, Francesco and Lopez, M. and Lopez-Oramas, A. and Machado de Oliveira Fraga, B. and Maggio, C. and Majumdar, P. and Makariev, M. and Mallamaci, M. and Maneva, G. and Manganaro, M. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Masuda, S. and Mazin, D. and Minev, M. and Miranda, J. M. and Mirzoyan, R. and Molina, E. and Moralejo, A. and Moreno, V. and Moretti, E. and Munar-Adrover, Pere and Neustroev, V. and Niedzwiecki, Andrzej and Rosillo, Mireia Nievas and Nigro, C. and Nilsson, Kari and Ninci, D. and Nishijima, K. and Noda, K. and Nogues, L. and Noethe, M. and Paiano, Simona and Palacio, J. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Pedaletti, G. and Penil, P. and Peresano, M. and Persic, M. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Garcia, J. R. and Rhode, W. and Ribo, Marc and Rico, J. and Righi, C. and Rugliancich, A. and Saha, Lab and Sahakyan, Narek and Saito, T. and Satalecka, K. and Schweizer, T. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Somero, A. and Stamerra, A. and Strzys, M. and Suric, T. and Tavecchio, Fabrizio and Temnikov, P. and Terzic, T. and Teshima, M. and Torres-Alba, N. and Tsujimoto, S. and van Scherpenberg, J. and Vanzo, G. and Vazquez Acosta, M. and Vovk, I. and Will, M. and Zaric, D.}, title = {Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {867}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration MAGIC Collaboration}, issn = {2041-8205}, doi = {10.3847/2041-8213/aae70e}, pages = {8}, year = {2018}, abstract = {We report on observations of the pulsar/Be star binary system PSR J2032+4127/MT91 213 in the energy range between 100 GeV and 20 TeV with the Very Energetic Radiation Imaging Telescope Array and Major Atmospheric Gamma Imaging Cherenkov telescope arrays. The binary orbit has a period of approximately 50 years, with the most recent periastron occurring on 2017 November 13. Our observations span from 18 months prior to periastron to one month after. A new point-like gamma-ray source is detected, coincident with the location of PSR J2032+4127/MT91 213. The gamma-ray light curve and spectrum are well characterized over the periastron passage. The flux is variable over at least an order of magnitude, peaking at periastron, thus providing a firm association of the TeV source with the pulsar/Be star system. Observations prior to periastron show a cutoff in the spectrum at an energy around 0.5 TeV. This result adds a new member to the small population of known TeV binaries, and it identifies only the second source of this class in which the nature and properties of the compact object are firmly established. We compare the gamma-ray results with the light curve measured with the X-ray Telescope on board the Neil Gehrels Swift Observatory and with the predictions of recent theoretical models of the system. We conclude that significant revision of the models is required to explain the details of the emission that we have observed, and we discuss the relationship between the binary system and the overlapping steady extended source, TeV J2032+4130.}, language = {en} } @article{AliuArchambaultArcheretal.2016, author = {Aliu, E. and Archambault, S. and Archer, A. and Arlen, T. and Aune, T. and Barnacka, Anna and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and B{\"o}ttcher, Markus and Bouvier, A. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Cesarini, A. and Chen, Xuhui and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dumm, J. and Eisch, J. D. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and H{\"u}tten, M. and Hakansson, Nils and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krause, M. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Orr, M. and Otte, A. N. and Pandel, D. and Park, N. and Pelassa, V. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Popkow, A. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rousselle, J. and Rovero, A. C. and Saxon, D. B. and Sembroski, G. H. and Shahinyan, K. and Sheidaei, F. and Skole, C. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Todd, N. W. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Baring, M. G. and Gonzalez, J. Becerra and Cillis, A. N. and Horan, D. and Paneque, D.}, title = {Very high energy outburst of Markarian 501 in May 2009}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {594}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {Veritas Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201628744}, pages = {12}, year = {2016}, abstract = {The very high energy (VHE; E > 100 GeV) blazar Markarian 501 was observed between April 17 and May 5 (MJD 54 938-54 956), 2009, as part of an extensive multiwavelength campaign from radio to VHE. Strong VHE yray activity was detected on May 1st with Whipple and VERITAS, when the flux (E > 400 GeV) increased to 10 times the preflare baseline flux (3.9 x 10(-11) ph cm(-2) s(-1)), reaching five times the flux of the Crab Nebula. This coincided with a decrease in the optical polarization and a rotation of the polarization angle by 15. This VHE flare showed a fast flux variation with an increase of a factor similar to 4 in 25 min, and a falling time of similar to 50 min. We present the observations of the quiescent state previous to the flare and of the high state after the flare, focusing on the flux and spectral variability from Whipple, VERITAS, Fermi-LAT, RXTE, and Swift combined with optical and radio data.}, language = {en} } @misc{AcharyaAramoBabicetal.2015, author = {Acharya, B. S. and Aramo, C. and Babic, A. and Barrio, J. A. and Baushev, Anton N. and Tjus, J. Becker and Berge, David and Bohacova, M. and Bonardi, A. and Brown, A. and Bugaev, V. and Bulik, Tomasz and Burton, M. and Busetto, G. and Caraveo, P. A. and Carosi, R. and Carr, John and Chadwick, Paula M. and Chudoba, J. and Conforti, V. and Connaughton, V. and Contreras, J. L. and Cotter, G. and Dazzi, F. and De Franco, A. and de la Calle, I. and Lopez, R. de los Reyes and De Lotto, B. and De Palma, F. and Di Girolamo, T. and Di Giulio, C. and Di Pierro, F. and Dournaux, J. -L. and Dwarkadas, Vikram V. and Ebr, J. and Egberts, Kathrin and Fesquet, M. and Fleischhack, H. and Font, L. and Fontaine, G. and Foerster, A. and F{\"u}ßling, Matthias and Garcia, B. and Lopez, R. Garcia and Garczarczyk, M. and Gargano, F. and Garrido, D. and Gaug, M. and Giglietto, N. and Giordano, F. and Giuliani, A. and Godinovic, N. and Gonzalez, M. M. and Grabarczyk, T. and Hassan, T. and Hoerandel, J. and Hrabovsky, M. and Hrupec, D. and Humensky, T. B. and Huovelin, J. and Jamrozy, M. and Janecek, P. and Kaaret, P. E. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kluzniak, W. and Kocot, J. and Komin, N. and Kubo, H. and Kushida, J. and Lamanna, G. and Lee, W. H. and Lenain, J. -P. and Lohse, T. and Lombardi, S. and Lopez-Coto, R. and Lopez-Oramas, A. and Lucarelli, F. and Maccarone, M. C. and Maier, G. and Majumdar, P. and Malaguti, G. and Mandat, D. and Mazziotta, Mario Nicola and Meagher, K. and Mirabal, N. and Morselli, A. and Moulin, E. and Niemiec, J. and Nievas, M. and Nishijima, K. and Nosek, D. and Nunio, F. and Ohishi, M. and Ohm, S. and Ong, R. A. and Orito, R. and Otte, N. and Palatka, M. and Pareschi, G. and Pech, M. and Persic, M. and Pohl, Manuela and Prouza, M. and Quirrenbach, A. and Raino, S. and Fernandez, G. Rodriguez and Romano, Patrizia and Rovero, A. C. and Rudak, B. and Schovanek, P. and Shayduk, M. and Siejkowski, H. and Sillanpaa, A. and Stefanik, S. and Stolarczyk, T. and Szanecki, M. and Szepieniec, T. and Tejedor, L. A. and Telezhinsky, Igor O. and Teshima, M. and Tibaldo, L. and Tibolla, O. and Tovmassian, G. and Travnicek, P. and Trzeciak, M. and Vallania, P. and van Eldik, C. and Vercellone, S. and Vigorito, C. and Wagner, S. J. and Wakely, S. P. and Weinstein, A. and Wierzcholska, A. and Wilhelm, Alina and Wojcik, P. and Yoshikoshi, T.}, title = {The Cherenkov Telescope Array potential for the study of young supernova remnants}, series = {Astroparticle physics}, volume = {62}, journal = {Astroparticle physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-6505}, doi = {10.1016/j.astropartphys.2014.08.005}, pages = {152 -- 164}, year = {2015}, abstract = {Supernova remnants (SNRs) are among the most important targets for gamma-ray observatories. Being prominent non-thermal sources, they are very likely responsible for the acceleration of the bulk of Galactic cosmic rays (CRS). To firmly establish the SNR paradigm for the origin of cosmic rays, it should be confirmed that protons are indeed accelerated in, and released from, SNRs with the appropriate flux and spectrum. This can be done by detailed theoretical models which account for microphysics of acceleration and various radiation processes of hadrons and leptons. The current generation of Cherenkov telescopes has insufficient sensitivity to constrain theoretical models. A new facility, the Cherenkov Telescope Array (CTA), will have superior capabilities and may finally resolve this long standing issue of high-energy astrophysics. We want to assess the capabilities of CTA to reveal the physics of various types of SNRs in the initial 2000 years of their evolution. During this time, the efficiency to accelerate cosmic rays is highest. We perform time-dependent simulations of the hydrodynamics, the magnetic fields, the cosmic-ray acceleration, and the non-thermal emission for type Ia, Ic and IIP SNRs. We calculate the CTA response to the y-ray emission from these SNRs for various ages and distances, and we perform a realistic analysis of the simulated data. We derive distance limits for the detectability and resolvability of these SNR types at several ages. We test the ability of CTA to reconstruct their morphological and spectral parameters as a function of their distance. Finally, we estimate how well CTA data will constrain the theoretical models. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{GimenezGarciaShenarTorrejonetal.2016, author = {Gimenez-Garcia, Ana and Shenar, Tomer and Torrejon, J. M. and Oskinova, Lida and Martinez-Nunez, S. and Hamann, Wolf-Rainer and Rodes-Roca, J. J. and Gonz{\´a}lez-Galan, A. and Alonso-Santiago, J. and Gonz{\´a}lez-Fern{\´a}ndez, C. and Bernabeu, Guillermo and Sander, Andreas Alexander Christoph}, title = {Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries}, series = {Siberian Mathematical Journal}, volume = {591}, journal = {Siberian Mathematical Journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527551}, pages = {25}, year = {2016}, abstract = {Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J175442619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 +/- 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e < 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities (v(infinity) = 1500 km s(-1) in IGR J17544-2619 and v(infinity) = 700 km s(-1) in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters.}, language = {en} } @article{HofmanHaywardHeimetal.2019, author = {Hofman, Maarten P. G. and Hayward, M. W. and Heim, M. and Marchand, P. and Rolandsen, C. M. and Mattisson, Jenny and Urbano, F. and Heurich, M. and Mysterud, A. and Melzheimer, J. and Morellet, N. and Voigt, Ulrich and Allen, B. L. and Gehr, Benedikt and Rouco Zufiaurre, Carlos and Ullmann, Wiebke and Holand, O. and Jorgensen, n H. and Steinheim, G. and Cagnacci, F. and Kroeschel, M. and Kaczensky, P. and Buuveibaatar, B. and Payne, J. C. and Palmegiani, I and Jerina, K. and Kjellander, P. and Johansson, O. and LaPoint, S. and Bayrakcismith, R. and Linnell, J. D. C. and Zaccaroni, M. and Jorge, M. L. S. and Oshima, J. E. F. and Songhurst, A. and Fischer, C. and Mc Bride, R. T. and Thompson, J. J. and Streif, S. and Sandfort, R. and Bonenfant, Christophe and Drouilly, M. and Klapproth, M. and Zinner, Dietmar and Yarnell, Richard and Stronza, A. and Wilmott, L. and Meisingset, E. and Thaker, Maria and Vanak, A. T. and Nicoloso, S. and Graeber, R. and Said, S. and Boudreau, M. R. and Devlin, A. and Hoogesteijn, R. and May-Junior, J. A. and Nifong, J. C. and Odden, J. and Quigley, H. B. and Tortato, F. and Parker, D. M. and Caso, A. and Perrine, J. and Tellaeche, C. and Zieba, F. and Zwijacz-Kozica, T. and Appel, C. L. and Axsom, I and Bean, W. T. and Cristescu, B. and Periquet, S. and Teichman, K. J. and Karpanty, S. and Licoppe, A. and Menges, V and Black, K. and Scheppers, Thomas L. and Schai-Braun, S. C. and Azevedo, F. C. and Lemos, F. G. and Payne, A. and Swanepoel, L. H. and Weckworth, B. and Berger, A. and Bertassoni, Alessandra and McCulloch, G. and Sustr, P. and Athreya, V and Bockmuhl, D. and Casaer, J. and Ekori, A. and Melovski, D. and Richard-Hansen, C. and van de Vyver, D. and Reyna-Hurtado, R. and Robardet, E. and Selva, N. and Sergiel, A. and Farhadinia, M. S. and Sunde, P. and Portas, R. and Ambarli, H{\"u}seyin and Berzins, R. and Kappeler, P. M. and Mann, G. K. and Pyritz, L. and Bissett, C. and Grant, T. and Steinmetz, R. and Swedell, Larissa and Welch, R. J. and Armenteras, D. and Bidder, O. R. and Gonzalez, T. M. and Rosenblatt, A. and Kachel, S. and Balkenhol, N.}, title = {Right on track?}, series = {PLoS one}, volume = {14}, journal = {PLoS one}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0216223}, pages = {26}, year = {2019}, abstract = {Satellite telemetry is an increasingly utilized technology in wildlife research, and current devices can track individual animal movements at unprecedented spatial and temporal resolutions. However, as we enter the golden age of satellite telemetry, we need an in-depth understanding of the main technological, species-specific and environmental factors that determine the success and failure of satellite tracking devices across species and habitats. Here, we assess the relative influence of such factors on the ability of satellite telemetry units to provide the expected amount and quality of data by analyzing data from over 3,000 devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the success rate in obtaining GPS fixes as well as in transferring these fixes to the user and we evaluate failure rates. Average fix success and data transfer rates were high and were generally better predicted by species and unit characteristics, while environmental characteristics influenced the variability of performance. However, 48\% of the unit deployments ended prematurely, half of them due to technical failure. Nonetheless, this study shows that the performance of satellite telemetry applications has shown improvements over time, and based on our findings, we provide further recommendations for both users and manufacturers.}, language = {en} } @article{BalthasarGoemoeryGonzalezManriqueetal.2016, author = {Balthasar, H. and G{\"o}m{\"o}ry, P. and Gonz{\´a}lez Manrique, Sergio Javier and Kuckein, Christoph and Kavka, J. and Kucera, A. and Schwartz, P. and Vaskova, R. and Berkefeld, T. and Collados Vera, M. and Denker, Carsten and Feller, A. and Hofmann, A. and Lagg, A. and Nicklas, H. and Suarez, D. and Pastor Yabar, A. and Rezaei, R. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201612432}, pages = {1050 -- 1056}, year = {2016}, abstract = {Arch filament systems occur in active sunspot groups, where a fibril structure connects areas of opposite magnetic polarity, in contrast to active region filaments that follow the polarity inversion line. We used the GREGOR Infrared Spectrograph (GRIS) to obtain the full Stokes vector in the spectral lines SiI lambda 1082.7 nm, He I lambda 1083.0 nm, and Ca I lambda 1083.9 nm. We focus on the near-infrared calcium line to investigate the photospheric magnetic field and velocities, and use the line core intensities and velocities of the helium line to study the chromospheric plasma. The individual fibrils of the arch filament system connect the sunspot with patches of magnetic polarity opposite to that of the spot. These patches do not necessarily coincide with pores, where the magnetic field is strongest. Instead, areas are preferred not far from the polarity inversion line. These areas exhibit photospheric downflows of moderate velocity, but significantly higher downflows of up to 30 km s(-1) in the chromospheric helium line. Our findings can be explained with new emerging flux where the matter flows downward along the field lines of rising flux tubes, in agreement with earlier results. (C) 2016 WILEY-VCH Verlag GmbH\& Co. KGaA, Weinheim}, language = {en} } @article{GonzalezFortesTassiTrucchietal.2019, author = {Gonzalez-Fortes, Gloria M. and Tassi, F. and Trucchi, E. and Henneberger, K. and Paijmans, Johanna L. A. and Diez-del-Molino, D. and Schroeder, H. and Susca, R. R. and Barroso-Ruiz, C. and Bermudez, F. J. and Barroso-Medina, C. and Bettencourt, A. M. S. and Sampaio, H. A. and Salas, A. and de Lombera-Hermida, A. and Fabregas Valcarce, Ram{\´o}n and Vaquero, M. and Alonso, S. and Lozano, Marina and Rodriguez-Alvarez, Xose Pedro and Fernandez-Rodriguez, C. and Manica, Andrea and Hofreiter, Michael and Barbujani, Guido}, title = {A western route of prehistoric human migration from Africa into the Iberian Peninsula}, series = {Proceedings of the Royal Society of London : B, Biological sciences}, volume = {286}, journal = {Proceedings of the Royal Society of London : B, Biological sciences}, number = {1895}, publisher = {Royal Society}, address = {London}, issn = {0962-8452}, doi = {10.1098/rspb.2018.2288}, pages = {10}, year = {2019}, abstract = {Being at the western fringe of Europe, Iberia had a peculiar prehistory and a complex pattern of Neolithization. A few studies, all based on modern populations, reported the presence of DNA of likely African origin in this region, generally concluding it was the result of recent gene flow, probably during the Islamic period. Here, we provide evidence of much older gene flow from Africa to Iberia by sequencing whole genomes from four human remains from northern Portugal and southern Spain dated around 4000 years BP (from the Middle Neolithic to the Bronze Age). We found one of them to carry an unequivocal sub-Saharan mitogenome of most probably West or West-Central African origin, to our knowledge never reported before in prehistoric remains outside Africa. Our analyses of ancient nuclear genomes show small but significant levels of sub-Saharan African affinity in several ancient Iberian samples, which indicates that what we detected was not an occasional individual phenomenon, but an admixture event recognizable at the population level. We interpret this result as evidence of an early migration process from Africa into the Iberian Peninsula through a western route, possibly across the Strait of Gibraltar.}, language = {en} } @article{StarkenburgMartinYouakimetal.2017, author = {Starkenburg, Else and Martin, Nicolas and Youakim, Kris and Aguado, David S. and Allende Prieto, Carlos and Arentsen, Anke and Bernard, Edouard J. and Bonifacio, Piercarlo and Caffau, Elisabetta and Carlberg, Raymond G. and Cote, Patrick and Fouesneau, Morgan and Francois, Patrick and Franke, Oliver and Gonzalez Hernandez, Jonay I. and Gwyn, Stephen D. J. and Hill, Vanessa and Ibata, Rodrigo A. and Jablonka, Pascale and Longeard, Nicolas and McConnachie, Alan W. and Navarro, Julio F. and Sanchez-Janssen, Ruben and Tolstoy, Eline and Venn, Kim A.}, title = {The Pristine survey - I. Mining the Galaxy for the most metal-poor stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {471}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx1068}, pages = {2587 -- 2604}, year = {2017}, abstract = {We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H\&K lines and conducted in the Northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope. This paper reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterize the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1000 deg(2) in the Galactic halo ranging from b similar to 30 degrees to similar to 78 degrees and covers many known stellar substructures. We demonstrate that, for Sloan Digital Sky Survey (SDSS) stellar objects, we can calibrate the photometry at the 0.02-mag level. The comparison with existing spectroscopic metallicities from SDSS/Sloan Extension for Galactic Understanding and Exploration (SEGUE) and Large Sky Area Multi-Object Fiber Spectroscopic Telescope shows that, when combined with SDSS broad-band g and i photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of similar to 0.2 dex from [Fe/H] = -0.5 down to the extremely metal-poor regime ([Fe/H] < -3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H](SEGUE) < -3.0 stars among [Fe/H](Pristine) < -3.0 selected stars is 24 per cent, and 85 per cent of the remaining candidates are still very metal poor ([Fe/H]<-2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H] < -4.0, which can teach us valuable lessons about the early Universe.}, language = {en} } @article{BerrahSanchezGonzalezJureketal.2019, author = {Berrah, N. and S{\´a}nchez-Gonz{\´a}lez, {\´A}lvaro and Jurek, Zoltan and Obaid, Razib and Xiong, H. and Squibb, R. J. and Osipov, T. and Lutman, A. and Fang, L. and Barillot, T. and Bozek, J. D. and Cryan, J. and Wolf, T. J. A. and Rolles, Daniel and Coffee, R. and Schnorr, Kirsten and Augustin, S. and Fukuzawa, Hironobu and Motomura, K. and Niebuhr, Nina Isabelle and Frasinski, L. J. and Feifel, Raimund and Schulz, Claus-Peter and Toyota, Kenji and Son, Sang-Kil and Ueda, K. and Pfeifer, T. and Marangos, J. P. and Santra, Robin}, title = {Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization}, series = {Nature physics}, volume = {15}, journal = {Nature physics}, number = {12}, publisher = {Nature Publ. Group}, address = {London}, issn = {1745-2473}, doi = {10.1038/s41567-019-0665-7}, pages = {1279 -- 1301}, year = {2019}, abstract = {X-ray free-electron lasers have, over the past decade, opened up the possibility of understanding the ultrafast response of matter to intense X-ray pulses. In earlier research on atoms and small molecules, new aspects of this response were uncovered, such as rapid sequences of inner-shell photoionization and Auger ionization. Here, we studied a larger molecule, buckminsterfullerene (C-60), exposed to 640 eV X-rays, and examined the role of chemical effects, such as chemical bonds and charge transfer, on the fragmentation following multiple ionization of the molecule. To provide time resolution, we performed femtosecond-resolved X-ray pump/X-ray probe measurements, which were accompanied by advanced simulations. The simulations and experiment reveal that despite substantial ionization induced by the ultrashort (20 fs) X-ray pump pulse, the fragmentation of C-60 is considerably delayed. This work uncovers the persistence of the molecular structure of C-60, which hinders fragmentation over a timescale of hundreds of femtoseconds. Furthermore, we demonstrate that a substantial fraction of the ejected fragments are neutral carbon atoms. These findings provide insights into X-ray free-electron laser-induced radiation damage in large molecules, including biomolecules.}, language = {en} } @article{TyFangGonzalezetal.2019, author = {Ty, Alexander J. A. and Fang, Zheng and Gonzalez, Rivver A. and Rozdeba, Paul J. and Abarbanel, Henry D.}, title = {Machine learning of time series using time-delay embedding and precision annealing}, series = {Neural Computation}, volume = {31}, journal = {Neural Computation}, number = {10}, publisher = {MIT Press}, address = {Cambridge}, issn = {0899-7667}, doi = {10.1162/neco_a_01224}, pages = {2004 -- 2024}, year = {2019}, abstract = {Tasking machine learning to predict segments of a time series requires estimating the parameters of a ML model with input/output pairs from the time series. We borrow two techniques used in statistical data assimilation in order to accomplish this task: time-delay embedding to prepare our input data and precision annealing as a training method. The precision annealing approach identifies the global minimum of the action (-log[P]). In this way, we are able to identify the number of training pairs required to produce good generalizations (predictions) for the time series. We proceed from a scalar time series s(tn);tn=t0+n Delta t and, using methods of nonlinear time series analysis, show how to produce a DE>1-dimensional time-delay embedding space in which the time series has no false neighbors as does the observed s(tn) time series. In that DE-dimensional space, we explore the use of feedforward multilayer perceptrons as network models operating on DE-dimensional input and producing DE-dimensional outputs.}, language = {en} } @article{DenglerWagnerDembiczetal.2018, author = {Dengler, J{\"u}rgen and Wagner, Viktoria and Dembicz, Iwona and Garcia-Mijangos, Itziar and Naqinezhad, Alireza and Boch, Steffen and Chiarucci, Alessandro and Conradi, Timo and Filibeck, Goffredo and Guarino, Riccardo and Janisova, Monika and Steinbauer, Manuel J. and Acic, Svetlana and Acosta, Alicia T. R. and Akasaka, Munemitsu and Allers, Marc-Andre and Apostolova, Iva and Axmanova, Irena and Bakan, Branko and Baranova, Alina and Bardy-Durchhalter, Manfred and Bartha, Sandor and Baumann, Esther and Becker, Thomas and Becker, Ute and Belonovskaya, Elena and Bengtsson, Karin and Benito Alonso, Jose Luis and Berastegi, Asun and Bergamini, Ariel and Bonini, Ilaria and Bruun, Hans Henrik and Budzhak, Vasyl and Bueno, Alvaro and Antonio Campos, Juan and Cancellieri, Laura and Carboni, Marta and Chocarro, Cristina and Conti, Luisa and Czarniecka-Wiera, Marta and De Frenne, Pieter and Deak, Balazs and Didukh, Yakiv P. and Diekmann, Martin and Dolnik, Christian and Dupre, Cecilia and Ecker, Klaus and Ermakov, Nikolai and Erschbamer, Brigitta and Escudero, Adrian and Etayo, Javier and Fajmonova, Zuzana and Felde, Vivian A. and Fernandez Calzado, Maria Rosa and Finckh, Manfred and Fotiadis, Georgios and Fracchiolla, Mariano and Ganeva, Anna and Garcia-Magro, Daniel and Gavilan, Rosario G. and Germany, Markus and Giladi, Itamar and Gillet, Francois and Giusso del Galdo, Gian Pietro and Gonzalez, Jose M. and Grytnes, John-Arvid and Hajek, Michal and Hajkova, Petra and Helm, Aveliina and Herrera, Mercedes and Hettenbergerova, Eva and Hobohm, Carsten and Huellbusch, Elisabeth M. and Ingerpuu, Nele and Jandt, Ute and Jeltsch, Florian and Jensen, Kai and Jentsch, Anke and Jeschke, Michael and Jimenez-Alfaro, Borja and Kacki, Zygmunt and Kakinuma, Kaoru and Kapfer, Jutta and Kavgaci, Ali and Kelemen, Andras and Kiehl, Kathrin and Koyama, Asuka and Koyanagi, Tomoyo F. and Kozub, Lukasz and Kuzemko, Anna and Kyrkjeeide, Magni Olsen and Landi, Sara and Langer, Nancy and Lastrucci, Lorenzo and Lazzaro, Lorenzo and Lelli, Chiara and Leps, Jan and Loebel, Swantje and Luzuriaga, Arantzazu L. and Maccherini, Simona and Magnes, Martin and Malicki, Marek and Marceno, Corrado and Mardari, Constantin and Mauchamp, Leslie and May, Felix and Michelsen, Ottar and Mesa, Joaquin Molero and Molnar, Zsolt and Moysiyenko, Ivan Y. and Nakaga, Yuko K. and Natcheva, Rayna and Noroozi, Jalil and Pakeman, Robin J. and Palpurina, Salza and Partel, Meelis and Paetsch, Ricarda and Pauli, Harald and Pedashenko, Hristo and Peet, Robert K. and Pielech, Remigiusz and Pipenbaher, Natasa and Pirini, Chrisoula and Pleskova, Zuzana and Polyakova, Mariya A. and Prentice, Honor C. and Reinecke, Jennifer and Reitalu, Triin and Pilar Rodriguez-Rojo, Maria and Rolecek, Jan and Ronkin, Vladimir and Rosati, Leonardo and Rosen, Ejvind and Ruprecht, Eszter and Rusina, Solvita and Sabovljevic, Marko and Maria Sanchez, Ana and Savchenko, Galina and Schuhmacher, Oliver and Skornik, Sonja and Sperandii, Marta Gaia and Staniaszek-Kik, Monika and Stevanovic-Dajic, Zora and Stock, Marin and Suchrow, Sigrid and Sutcliffe, Laura M. E. and Swacha, Grzegorz and Sykes, Martin and Szabo, Anna and Talebi, Amir and Tanase, Catalin and Terzi, Massimo and Tolgyesi, Csaba and Torca, Marta and Torok, Peter and Tothmeresz, Bela and Tsarevskaya, Nadezda and Tsiripidis, Ioannis and Tzonev, Rossen and Ushimaru, Atushi and Valko, Orsolya and van der Maarel, Eddy and Vanneste, Thomas and Vashenyak, Iuliia and Vassilev, Kiril and Viciani, Daniele and Villar, Luis and Virtanen, Risto and Kosic, Ivana Vitasovic and Wang, Yun and Weiser, Frank and Went, Julia and Wesche, Karsten and White, Hannah and Winkler, Manuela and Zaniewski, Piotr T. and Zhang, Hui and Ziv, Yaron and Znamenskiy, Sergey and Biurrun, Idoia}, title = {GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands}, series = {Phytocoenologia}, volume = {48}, journal = {Phytocoenologia}, number = {3}, publisher = {Cramer}, address = {Stuttgart}, issn = {0340-269X}, doi = {10.1127/phyto/2018/0267}, pages = {331 -- 347}, year = {2018}, abstract = {GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.}, language = {en} } @article{vanderValkKreinerMollerKooijmanetal.2015, author = {van der Valk, Ralf J. P. and Kreiner-Moller, Eskil and Kooijman, Marjolein N. and Guxens, Monica and Stergiakouli, Evangelia and Saaf, Annika and Bradfield, Jonathan P. and Geller, Frank and Hayes, M. Geoffrey and Cousminer, Diana L. and Koerner, Antje and Thiering, Elisabeth and Curtin, John A. and Myhre, Ronny and Huikari, Ville and Joro, Raimo and Kerkhof, Marjan and Warrington, Nicole M. and Pitkanen, Niina and Ntalla, Ioanna and Horikoshi, Momoko and Veijola, Riitta and Freathy, Rachel M. and Teo, Yik-Ying and Barton, Sheila J. and Evans, David M. and Kemp, John P. and St Pourcain, Beate and Ring, Susan M. and Smith, George Davey and Bergstrom, Anna and Kull, Inger and Hakonarson, Hakon and Mentch, Frank D. and Bisgaard, Hans and Chawes, Bo Lund Krogsgaard and Stokholm, Jakob and Waage, Johannes and Eriksen, Patrick and Sevelsted, Astrid and Melbye, Mads and van Duijn, Cornelia M. and Medina-Gomez, Carolina and Hofman, Albert and de Jongste, Johan C. and Taal, H. Rob and Uitterlinden, Andre G. and Armstrong, Loren L. and Eriksson, Johan and Palotie, Aarno and Bustamante, Mariona and Estivill, Xavier and Gonzalez, Juan R. and Llop, Sabrina and Kiess, Wieland and Mahajan, Anubha and Flexeder, Claudia and Tiesler, Carla M. T. and Murray, Clare S. and Simpson, Angela and Magnus, Per and Sengpiel, Verena and Hartikainen, Anna-Liisa and Keinanen-Kiukaanniemi, Sirkka and Lewin, Alexandra and Alves, Alexessander Da Silva Couto and Blakemore, Alexandra I. F. and Buxton, Jessica L. and Kaakinen, Marika and Rodriguez, Alina and Sebert, Sylvain and Vaarasmaki, Marja and Lakka, Timo and Lindi, Virpi and Gehring, Ulrike and Postma, Dirkje S. and Ang, Wei and Newnham, John P. and Lyytikainen, Leo-Pekka and Pahkala, Katja and Raitakari, Olli T. and Panoutsopoulou, Kalliope and Zeggini, Eleftheria and Boomsma, Dorret I. and Groen-Blokhuis, Maria and Ilonen, Jorma and Franke, Lude and Hirschhorn, Joel N. and Pers, Tune H. and Liang, Liming and Huang, Jinyan and Hocher, Berthold and Knip, Mikael and Saw, Seang-Mei and Holloway, John W. and Melen, Erik and Grant, Struan F. A. and Feenstra, Bjarke and Lowe, William L. and Widen, Elisabeth and Sergeyev, Elena and Grallert, Harald and Custovic, Adnan and Jacobsson, Bo and Jarvelin, Marjo-Riitta and Atalay, Mustafa and Koppelman, Gerard H. and Pennell, Craig E. and Niinikoski, Harri and Dedoussis, George V. and Mccarthy, Mark I. and Frayling, Timothy M. and Sunyer, Jordi and Timpson, Nicholas J. and Rivadeneira, Fernando and Bonnelykke, Klaus and Jaddoe, Vincent W. V.}, title = {A novel common variant in DCST2 is associated with length in early life and height in adulthood}, series = {Human molecular genetics}, volume = {24}, journal = {Human molecular genetics}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {Early Genetics Lifecourse, Genetic Invest ANthropometric, Early Growth Genetics EGG}, issn = {0964-6906}, doi = {10.1093/hmg/ddu510}, pages = {1155 -- 1168}, year = {2015}, abstract = {Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 x 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; beta = 0.046, SE = 0.008, P = 2.46 x 10(-8), explained variance = 0.05\%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 x 10(-4)) and adult height (N = 127 513; P = 1.45 x 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13\% of variance in birth length. The same SNPs explained 2.95\% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.}, language = {en} } @misc{HofreiterPaijmansGoodchildetal.2015, author = {Hofreiter, Michael and Paijmans, Johanna L. A. and Goodchild, Helen and Speller, Camilla F. and Barlow, Axel and Gonzalez-Fortes, Gloria M. and Thomas, Jessica A. and Ludwig, Arne and Collins, Matthew J.}, title = {The future of ancient DNA}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {908}, issn = {1866-8372}, doi = {10.25932/publishup-43881}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438816}, pages = {284 -- 295}, year = {2015}, abstract = {Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7x coverage (mammoth) in 2008 to more than 50x coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics.}, language = {en} } @article{HofreiterPaijmansGoodchildetal.2015, author = {Hofreiter, Michael and Paijmans, Johanna L. A. and Goodchild, Helen and Speller, Camilla F. and Barlow, Axel and Gonz{\´a}lez-Fortes, Gloria M. and Thomas, Jessica A. and Ludwig, Arne and Collins, Matthew J.}, title = {The future of ancient DNA: Technical advances and conceptual shifts}, series = {Bioessays : ideas that push the boundaries}, volume = {37}, journal = {Bioessays : ideas that push the boundaries}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0265-9247}, doi = {10.1002/bies.201400160}, pages = {284 -- 293}, year = {2015}, abstract = {Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7x coverage (mammoth) in 2008 to more than 50x coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics.}, language = {en} } @article{BarlowCahillHartmannetal.2018, author = {Barlow, Axel and Cahill, James A. and Hartmann, Stefanie and Theunert, Christoph and Xenikoudakis, Georgios and Gonzalez-Fortes, Gloria M. and Paijmans, Johanna L. A. and Rabeder, Gernot and Frischauf, Christine and Garcia-Vazquez, Ana and Murtskhvaladze, Marine and Saarma, Urmas and Anijalg, Peeter and Skrbinsek, Tomaz and Bertorelle, Giorgio and Gasparian, Boris and Bar-Oz, Guy and Pinhasi, Ron and Slatkin, Montgomery and Dalen, Love and Shapiro, Beth and Hofreiter, Michael}, title = {Partial genomic survival of cave bears in living brown bears}, series = {Nature Ecology \& Evolution}, volume = {2}, journal = {Nature Ecology \& Evolution}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-334X}, doi = {10.1038/s41559-018-0654-8}, pages = {1563 -- 1570}, year = {2018}, abstract = {Although many large mammal species went extinct at the end of the Pleistocene epoch, their DNA may persist due to past episodes of interspecies admixture. However, direct empirical evidence of the persistence of ancient alleles remains scarce. Here, we present multifold coverage genomic data from four Late Pleistocene cave bears (Ursus spelaeus complex) and show that cave bears hybridized with brown bears (Ursus arctos) during the Pleistocene. We develop an approach to assess both the directionality and relative timing of gene flow. We find that segments of cave bear DNA still persist in the genomes of living brown bears, with cave bears contributing 0.9 to 2.4\% of the genomes of all brown bears investigated. Our results show that even though extinction is typically considered as absolute, following admixture, fragments of the gene pool of extinct species can survive for tens of thousands of years in the genomes of extant recipient species.}, language = {en} } @article{ReadKegelKluteetal.2013, author = {Read, Betsy A. and Kegel, Jessica and Klute, Mary J. and Kuo, Alan and Lefebvre, Stephane C. and Maumus, Florian and Mayer, Christoph and Miller, John and Monier, Adam and Salamov, Asaf and Young, Jeremy and Aguilar, Maria and Claverie, Jean-Michel and Frickenhaus, Stephan and Gonzalez, Karina and Herman, Emily K. and Lin, Yao-Cheng and Napier, Johnathan and Ogata, Hiroyuki and Sarno, Analissa F. and Shmutz, Jeremy and Schroeder, Declan and de Vargas, Colomban and Verret, Frederic and von Dassow, Peter and Valentin, Klaus and Van de Peer, Yves and Wheeler, Glen and Dacks, Joel B. and Delwiche, Charles F. and Dyhrman, Sonya T. and Gl{\"o}ckner, Gernot and John, Uwe and Richards, Thomas and Worden, Alexandra Z. and Zhang, Xiaoyu and Grigoriev, Igor V. and Allen, Andrew E. and Bidle, Kay and Borodovsky, M. and Bowler, C. and Brownlee, Colin and Cock, J. Mark and Elias, Marek and Gladyshev, Vadim N. and Groth, Marco and Guda, Chittibabu and Hadaegh, Ahmad and Iglesias-Rodriguez, Maria Debora and Jenkins, J. and Jones, Bethan M. and Lawson, Tracy and Leese, Florian and Lindquist, Erika and Lobanov, Alexei and Lomsadze, Alexandre and Malik, Shehre-Banoo and Marsh, Mary E. and Mackinder, Luke and Mock, Thomas and M{\"u}ller-R{\"o}ber, Bernd and Pagarete, Antonio and Parker, Micaela and Probert, Ian and Quesneville, Hadi and Raines, Christine and Rensing, Stefan A. and Riano-Pachon, Diego Mauricio and Richier, Sophie and Rokitta, Sebastian and Shiraiwa, Yoshihiro and Soanes, Darren M. and van der Giezen, Mark and Wahlund, Thomas M. and Williams, Bryony and Wilson, Willie and Wolfe, Gordon and Wurch, Louie L.}, title = {Pan genome of the phytoplankton Emiliania underpins its global distribution}, series = {Nature : the international weekly journal of science}, volume = {499}, journal = {Nature : the international weekly journal of science}, number = {7457}, publisher = {Nature Publ. Group}, address = {London}, organization = {Emiliania Huxleyi Annotation}, issn = {0028-0836}, doi = {10.1038/nature12221}, pages = {209 -- 213}, year = {2013}, abstract = {Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.}, language = {en} } @article{ToalaOskinovaGonzalezGalanetal.2016, author = {Toala, J. A. and Oskinova, Lida and Gonzalez-Galan, Ana and Guerrero, M. A. and Ignace, R. and Pohl, Martin}, title = {X-RAY OBSERVATIONS OF BOW SHOCKS AROUND RUNAWAY O STARS. THE CASE OF zeta OPH AND BD+43 degrees 3654}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {821}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/821/2/79}, pages = {9}, year = {2016}, abstract = {Non-thermal radiation has been predicted within bow shocks around runaway stars by recent theoretical works. We present X-ray observations toward the runaway stars zeta Oph by Chandra and Suzaku and of BD+43 degrees 3654 by XMM-Newton to search for the presence of non-thermal X-ray emission. We found no evidence of non-thermal emission spatially coincident with the bow shocks; nonetheless, diffuse emission was detected in the vicinity of zeta Oph. After a careful analysis of its spectral characteristics, we conclude that this emission has a thermal nature with a plasma temperature of T approximate to 2 x 10(6) K. The cometary shape of this emission seems to be in line with recent predictions of radiation-hydrodynamic models of runaway stars. The case of BD+43 degrees 3654 is puzzling, as non-thermal emission has been reported in a previous work for this source.}, language = {en} } @article{GonzalezManriqueKuckeinColladosetal.2018, author = {Gonzalez Manrique, Sergio Javier and Kuckein, Christoph and Collados, M. and Denker, Carsten and Solanki, S. K. and Gomory, P. and Verma, Meetu and Balthasar, H. and Lagg, A. and Diercke, Andrea}, title = {Temporal evolution of arch filaments as seen in He I 10 830 angstrom}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {617}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201832684}, pages = {11}, year = {2018}, abstract = {Aims. We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. Methods. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) in the He I 10 830 angstrom spectral range. The He I triplet profiles were fitted with analytic functions to infer line-of-sight (LOS) velocities to follow plasma motions within the AFS. Results. We tracked the temporal evolution of an individual arch filament over its entire lifetime, as seen in the He I 10 830 angstrom triplet. The arch filament expanded in height and extended in length from 13 ' to 21 '. The lifetime of this arch filament is about 30 min. About 11 min after the arch filament is seen in He I, the loop top starts to rise with an average Doppler velocity of 6 km s(-1). Only two minutes later, plasma drains down with supersonic velocities towards the footpoints reaching a peak velocity of up to 40 km s(-1) in the chromosphere. The temporal evolution of He I 10 830 angstrom profiles near the leading pore showed almost ubiquitous dual red components of the He I triplet, indicating strong downflows, along with material nearly at rest within the same resolution element during the whole observing time.}, language = {en} } @misc{SchulzeMartinezGonzalezFungetal.2018, author = {Schulze, Matthias B. and Martinez-Gonzalez, Miguel A. and Fung, Teresa T. and Lichtenstein, Alice H. and Forouhi, Nita G.}, title = {Food based dietary patterns and chronic disease prevention}, series = {BMJ-British medical journal}, volume = {361}, journal = {BMJ-British medical journal}, publisher = {BMJ Publishing Group}, address = {London}, issn = {1756-1833}, doi = {10.1136/bmj.k2396}, pages = {6}, year = {2018}, abstract = {Matthias B Schulze and colleagues discuss current knowledge on the associations between dietary patterns and cancer, coronary heart disease, stroke, and type 2 diabetes, focusing on areas of uncertainty and future research directions.}, language = {en} } @article{VermaDenkerBalthasaretal.2018, author = {Verma, Meetu and Denker, Carsten and Balthasar, H. and Kuckein, Christoph and Rezaei, R. and Sobotka, Michal and Deng, N. and Wang, Haimin and Tritschler, A. and Collados, M. and Diercke, Andrea and Gonz{\´a}lez Manrique, Sergio Javier}, title = {High-resolution imaging and near-infrared spectroscopy of penumbral decay}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {614}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731801}, pages = {14}, year = {2018}, abstract = {Aims. Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us to scrutinize the velocity and magnetic fields of sunspots and their surroundings. Methods. Active region NOAA 12597 was observed on 2016 September 24 with the 1.5-meter GREGOR solar telescope using high-spatial-resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with local correlation tracking, whereas line-of-sight (LOS) velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the "Stokes Inversions based on Response functions" (SIR) code for the Si I and Ca I NIR lines. Results. At the time of the GREGOR observations, the leading sunspot had two light bridges indicating the onset of its decay. One of the light bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55 degrees clockwise over 12 h. Conclusions. In the high-resolution observations of a decaying sunspot, the penumbral filaments facing the flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.}, language = {en} } @article{NunesNesiAlseekhdeOliveiraSilvaetal.2019, author = {Nunes-Nesi, Adriano and Alseekh, Saleh and de Oliveira Silva, Franklin Magnum and Omranian, Nooshin and Lichtenstein, Gabriel and Mirnezhad, Mohammad and Romero Gonzalez, Roman R. and Sabio y Garcia, Julia and Conte, Mariana and Leiss, Kirsten A. and Klinkhamer, Peter Gerardus Leonardus and Nikoloski, Zoran and Carrari, Fernando and Fernie, Alisdair R.}, title = {Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds}, series = {Metabolomics}, volume = {15}, journal = {Metabolomics}, number = {46}, publisher = {Springer}, address = {New York}, issn = {1573-3882}, doi = {10.1007/s11306-019-1503-8}, pages = {13}, year = {2019}, abstract = {IntroductionTo date, most studies of natural variation and metabolite quantitative trait loci (mQTL) in tomato have focused on fruit metabolism, leaving aside the identification of genomic regions involved in the regulation of leaf metabolism.ObjectiveThis study was conducted to identify leaf mQTL in tomato and to assess the association of leaf metabolites and physiological traits with the metabolite levels from other tissues.MethodsThe analysis of components of leaf metabolism was performed by phenotypying 76 tomato ILs with chromosome segments of the wild species Solanum pennellii in the genetic background of a cultivated tomato (S. lycopersicum) variety M82. The plants were cultivated in two different environments in independent years and samples were harvested from mature leaves of non-flowering plants at the middle of the light period. The non-targeted metabolite profiling was obtained by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). With the data set obtained in this study and already published metabolomics data from seed and fruit, we performed QTL mapping, heritability and correlation analyses.ResultsChanges in metabolite contents were evident in the ILs that are potentially important with respect to stress responses and plant physiology. By analyzing the obtained data, we identified 42 positive and 76 negative mQTL involved in carbon and nitrogen metabolism.ConclusionsOverall, these findings allowed the identification of S. lycopersicum genome regions involved in the regulation of leaf primary carbon and nitrogen metabolism, as well as the association of leaf metabolites with metabolites from seeds and fruits.}, language = {en} } @misc{MulderBoitMorietal.2012, author = {Mulder, Christian and Boit, Alice and Mori, Shigeta and Vonk, J. Arie and Dyer, Scott D. and Faggiano, Leslie and Geisen, Stefan and Gonzalez, Angelica L. and Kaspari, Michael and Lavorel, Sandra and Marquet, Pablo A. and Rossberg, Axel G. and Sterner, Robert W. and Voigt, Winfried and Wall, Diana H.}, title = {Distributional (In)Congruence of Biodiversity-Ecosystem Functioning}, series = {Advances in ecological research}, volume = {46}, journal = {Advances in ecological research}, editor = {Jacob, U and Woodward, G}, publisher = {Elsevier}, address = {San Diego}, isbn = {978-0-12-396992-7}, issn = {0065-2504}, doi = {10.1016/B978-0-12-396992-7.00001-0}, pages = {1 -- 88}, year = {2012}, abstract = {The majority of research on biodiversity ecosystem functioning in laboratories has concentrated on a few traits, but there is increasing evidence from the field that functional diversity controls ecosystem functioning more often than does species number. Given the importance of traits as predictors of niche complementarity and community structures, we (1) examine how the diversity sensu lato of forest trees, freshwater fishes and soil invertebrates might support ecosystem functioning and (2) discuss the relevance of productive biota for monophyletic assemblages (taxocenes). In terrestrial ecosystems, correlating traits to abiotic factors is complicated by the appropriate choice of body-size distributions. Angiosperm and gymnosperm trees, for example, show metabolic incongruences in their respiration rates despite their pronounced macroecological scaling. Scaling heterotrophic organisms within their monophyletic assemblages seems more difficult than scaling autotrophs: in contrast to the generally observed decline of mass-specific metabolic rates with body mass within metazoans, soil organisms such as protozoans show opposite mass-specific trends. At the community level, the resource demand of metazoans shapes multitrophic interactions. Hence, population densities and their food web relationships reflect functional diversity, but the influence of biodiversity on stability and ecosystem functioning remains less clear. We focused on fishes in 18 riverine food webs, where the ratio of primary versus secondary extinctions (hereafter, 'extinction partitioning') summarizes the responses of fish communities to primary species loss (deletions) and its consequences. Based on extinction partitioning, our high-diversity food webs were just as (or even more) vulnerable to extinctions as low-diversity food webs. Our analysis allows us to assess consequences of the relocation or removal of fish species and to help with decision-making in sustainable river management. The study highlights that the topology of food webs (and not simply taxonomic diversity) plays a greater role in stabilizing the food web and enhancing ecological services than is currently acknowledged.}, language = {en} } @article{DenkerHeibelRendteletal.2016, author = {Denker, Carsten and Heibel, C. and Rendtel, J. and Arlt, K. and Balthasar, H. and Diercke, Andrea and Gonzalez Manrique, Sergio Javier and Hofmann, A. and Kuckein, Christoph and {\"O}nel, H. and Valliappan, Senthamizh Pavai and Staude, J. and Verma, Meetu}, title = {Solar physics at the Einstein Tower}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201612442}, pages = {1105 -- 1113}, year = {2016}, language = {en} } @misc{BarlowHartmannGonzalezetal.2020, author = {Barlow, Axel and Hartmann, Stefanie and Gonzalez, Javier and Hofreiter, Michael and Paijmans, Johanna L. A.}, title = {Consensify}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1033}, issn = {1866-8372}, doi = {10.25932/publishup-47252}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472521}, pages = {24}, year = {2020}, abstract = {A standard practise in palaeogenome analysis is the conversion of mapped short read data into pseudohaploid sequences, frequently by selecting a single high-quality nucleotide at random from the stack of mapped reads. This controls for biases due to differential sequencing coverage, but it does not control for differential rates and types of sequencing error, which are frequently large and variable in datasets obtained from ancient samples. These errors have the potential to distort phylogenetic and population clustering analyses, and to mislead tests of admixture using D statistics. We introduce Consensify, a method for generating pseudohaploid sequences, which controls for biases resulting from differential sequencing coverage while greatly reducing error rates. The error correction is derived directly from the data itself, without the requirement for additional genomic resources or simplifying assumptions such as contemporaneous sampling. For phylogenetic and population clustering analysis, we find that Consensify is less affected by artefacts than methods based on single read sampling. For D statistics, Consensify is more resistant to false positives and appears to be less affected by biases resulting from different laboratory protocols than other frequently used methods. Although Consensify is developed with palaeogenomic data in mind, it is applicable for any low to medium coverage short read datasets. We predict that Consensify will be a useful tool for future studies of palaeogenomes.}, language = {en} } @article{BarlowHartmannGonzalezetal.2020, author = {Barlow, Axel and Hartmann, Stefanie and Gonzalez, Javier and Hofreiter, Michael and Paijmans, Johanna L. A.}, title = {Consensify}, series = {Genes / Molecular Diversity Preservation International}, volume = {11}, journal = {Genes / Molecular Diversity Preservation International}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes11010050}, pages = {22}, year = {2020}, abstract = {A standard practise in palaeogenome analysis is the conversion of mapped short read data into pseudohaploid sequences, frequently by selecting a single high-quality nucleotide at random from the stack of mapped reads. This controls for biases due to differential sequencing coverage, but it does not control for differential rates and types of sequencing error, which are frequently large and variable in datasets obtained from ancient samples. These errors have the potential to distort phylogenetic and population clustering analyses, and to mislead tests of admixture using D statistics. We introduce Consensify, a method for generating pseudohaploid sequences, which controls for biases resulting from differential sequencing coverage while greatly reducing error rates. The error correction is derived directly from the data itself, without the requirement for additional genomic resources or simplifying assumptions such as contemporaneous sampling. For phylogenetic and population clustering analysis, we find that Consensify is less affected by artefacts than methods based on single read sampling. For D statistics, Consensify is more resistant to false positives and appears to be less affected by biases resulting from different laboratory protocols than other frequently used methods. Although Consensify is developed with palaeogenomic data in mind, it is applicable for any low to medium coverage short read datasets. We predict that Consensify will be a useful tool for future studies of palaeogenomes.}, language = {en} } @misc{CarlaUhinkGorideLiberoetal.2020, author = {Carl{\`a}-Uhink, Filippo and Gori, Maja and de Libero, Loretana and Avalli, Andrea and Pintucci, Alessandro and Clementi, Jessica and Chrysafis, Charalampos I. and Gardner, Chelsea A. M. and Klein, Jonas and Gonz{\´a}lez-Vaquerizo, Helena and Mihanovic, Andelko and Agbamu, Samuel and Dubbini, Rachele and Almagor, Eran}, title = {Modern Identities and Classical Antiquity}, series = {thersites}, volume = {2019}, journal = {thersites}, number = {10}, editor = {Carl{\`a}-Uhink, Filippo and Gori, Maja}, issn = {2364-7612}, doi = {10.34679/thersites.vol10}, pages = {265}, year = {2020}, abstract = {Studies on the "uses of the past" have steadily and consistently advanced over the past twenty years. Following the seminal studies by Hobsbawm and Ranger and Benedict Anderson on the role of narratives of the past in constructing (national) identities, and thanks the always more widespread practice of reception studies, the attention for cultural memory and lieux de m{\´e}moire, and following, many publications have investigated the role of nearer and further time layers in defining and determining structures of identity and senses of belonging across the world. Didactics of history has also contributed a great deal to this field of studies, also thanks to the always more refined methodologies of school book analysis. Classical Antiquity has obviously not been neglected, and multiple studies have been dedicated to its role in the development and reinforcement of modern identities. Yet, not only some areas of the world have remained less considered than others, but most attention has been dedicated to national identities, nationalistic discourses, and their activation through historical narratives. This special issues of thersites wants to contribute further to research on the role of Classical Antiquity within modern identities, asking scholars to focus especially on areas that have been less strongly represented in scholarship until now.}, language = {en} } @article{AlbertiGonzalezPaijmansetal.2018, author = {Alberti, Federica and Gonzalez, Javier and Paijmans, Johanna L. A. and Basler, Nikolas and Preick, Michaela and Henneberger, Kirstin and Trinks, Alexandra and Rabeder, Gernot and Conard, Nicholas J. and Muenzel, Susanne C. and Joger, Ulrich and Fritsch, Guido and Hildebrandt, Thomas and Hofreiter, Michael and Barlow, Axel}, title = {Optimized DNA sampling of ancient bones using Computed Tomography scans}, series = {Molecular ecology resources}, volume = {18}, journal = {Molecular ecology resources}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1755-098X}, doi = {10.1111/1755-0998.12911}, pages = {1196 -- 1208}, year = {2018}, abstract = {The prevalence of contaminant microbial DNA in ancient bone samples represents the principal limiting factor for palaeogenomic studies, as it may comprise more than 99\% of DNA molecules obtained. Efforts to exclude or reduce this contaminant fraction have been numerous but also variable in their success. Here, we present a simple but highly effective method to increase the relative proportion of endogenous molecules obtained from ancient bones. Using computed tomography (CT) scanning, we identify the densest region of a bone as optimal for sampling. This approach accurately identifies the densest internal regions of petrous bones, which are known to be a source of high-purity ancient DNA. For ancient long bones, CT scans reveal a high-density outermost layer, which has been routinely removed and discarded prior to DNA extraction. For almost all long bones investigated, we find that targeted sampling of this outermost layer provides an increase in endogenous DNA content over that obtained from softer, trabecular bone. This targeted sampling can produce as much as 50-fold increase in the proportion of endogenous DNA, providing a directly proportional reduction in sequencing costs for shotgun sequencing experiments. The observed increases in endogenous DNA proportion are not associated with any reduction in absolute endogenous molecule recovery. Although sampling the outermost layer can result in higher levels of human contamination, some bones were found to have more contamination associated with the internal bone structures. Our method is highly consistent, reproducible and applicable across a wide range of bone types, ages and species. We predict that this discovery will greatly extend the potential to study ancient populations and species in the genomics era.}, language = {en} } @article{BatistaMorenoRomeroQiuetal.2019, author = {Batista, Rita A. and Moreno-Romero, Jordi and Qiu, Yichun and van Boven, Joram and Santos-Gonzalez, Juan and Figueiredo, Duarte Dionisio and K{\"o}hler, Claudia}, title = {The MADS-box transcription factor PHERES1 controls imprinting in the endosperm by binding to domesticated transposons}, series = {eLife}, volume = {8}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.50541}, pages = {29}, year = {2019}, abstract = {MADS-box transcription factors (TFs) are ubiquitous in eukaryotic organisms and play major roles during plant development. Nevertheless, their function in seed development remains largely unknown. Here, we show that the imprinted Arabidopsis thaliana MADS-box TF PHERES1 (PHE1) is a master regulator of paternally expressed imprinted genes, as well as of non-imprinted key regulators of endosperm development. PHE1 binding sites show distinct epigenetic modifications on maternal and paternal alleles, correlating with parental-specific transcriptional activity. Importantly, we show that the CArG-box-like DNA-binding motifs that are bound by PHE1 have been distributed by RC/Helitron transposable elements. Our data provide an example of the molecular domestication of these elements which, by distributing PHE1 binding sites throughout the genome, have facilitated the recruitment of crucial endosperm regulators into a single transcriptional network.}, language = {en} } @article{BatistaFigueiredoSantosGonzalezetal.2019, author = {Batista, Rita A. and Figueiredo, Duarte Dionisio and Santos-Gonzalez, Juan and K{\"o}hler, Claudia}, title = {Auxin regulates endosperm cellularization in Arabidopsis}, series = {Genes \& Development}, volume = {33}, journal = {Genes \& Development}, number = {7-8}, publisher = {Cold Spring Harbor Laboratory Press}, address = {Cold Spring Harbor, NY}, issn = {0890-9369}, doi = {10.1101/gad.316554.118}, pages = {466 -- 476}, year = {2019}, abstract = {The endosperm is an ephemeral tissue that nourishes the developing embryo, similar to the placenta in mammals. In most angiosperms, endosperm development starts as a syncytium, in which nuclear divisions are not followed by cytokinesis. The timing of endosperm cellularization largely varies between species, and the event triggering this transition remains unknown. Here we show that increased auxin biosynthesis in the endosperm prevents its cellularization, leading to seed arrest. Auxin-overproducing seeds phenocopy paternal-excess triploid seeds derived from hybridizations of diploid maternal plants with tetraploid fathers. Concurrently, auxin-related genes are strongly overexpressed in triploid seeds, correlating with increased auxin activity. Reducing auxin biosynthesis and signaling reestablishes endosperm cellularization in triploid seeds and restores their viability, highlighting a causal role of increased auxin in preventing endosperm cellularization. We propose that auxin determines the time of endosperm cellularization, and thereby uncovered a central role of auxin in establishing hybridization barriers in plants.}, language = {en} } @misc{GurkeVidalGorosquietaPajimansetal.2021, author = {Gurke, Marie and Vidal-Gorosquieta, Amalia and Pajimans, Johanna L. A. and Wȩcek, Karolina and Barlow, Axel and Gonz{\´a}lez-Fortes, Gloria M. and Hartmann, Stefanie and Grandal-d'Anglade, Aurora and Hofreiter, Michael}, title = {Insight into the introduction of domestic cattle and the process of Neolithization to the Spanish region Galicia by genetic evidence}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-52087}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-520875}, pages = {17}, year = {2021}, abstract = {Domestic cattle were brought to Spain by early settlers and agricultural societies. Due to missing Neolithic sites in the Spanish region of Galicia, very little is known about this process in this region. We sampled 18 cattle subfossils from different ages and different mountain caves in Galicia, of which 11 were subject to sequencing of the mitochondrial genome and phylogenetic analysis, to provide insight into the introduction of cattle to this region. We detected high similarity between samples from different time periods and were able to compare the time frame of the first domesticated cattle in Galicia to data from the connecting region of Cantabria to show a plausible connection between the Neolithization of these two regions. Our data shows a close relationship of the early domesticated cattle of Galicia and modern cow breeds and gives a general insight into cattle phylogeny. We conclude that settlers migrated to this region of Spain from Europe and introduced common European breeds to Galicia.}, language = {en} } @article{GurkeVidalGorosquietaPajimansetal.2021, author = {Gurke, Marie and Vidal-Gorosquieta, Amalia and Pajimans, Johanna L. A. and Wȩcek, Karolina and Barlow, Axel and Gonz{\´a}lez-Fortes, Gloria M. and Hartmann, Stefanie and Grandal-d'Anglade, Aurora and Hofreiter, Michael}, title = {Insight into the introduction of domestic cattle and the process of Neolithization to the Spanish region Galicia by genetic evidence}, series = {PLoS ONE}, volume = {16}, journal = {PLoS ONE}, number = {4}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0249537}, pages = {15}, year = {2021}, abstract = {Domestic cattle were brought to Spain by early settlers and agricultural societies. Due to missing Neolithic sites in the Spanish region of Galicia, very little is known about this process in this region. We sampled 18 cattle subfossils from different ages and different mountain caves in Galicia, of which 11 were subject to sequencing of the mitochondrial genome and phylogenetic analysis, to provide insight into the introduction of cattle to this region. We detected high similarity between samples from different time periods and were able to compare the time frame of the first domesticated cattle in Galicia to data from the connecting region of Cantabria to show a plausible connection between the Neolithization of these two regions. Our data shows a close relationship of the early domesticated cattle of Galicia and modern cow breeds and gives a general insight into cattle phylogeny. We conclude that settlers migrated to this region of Spain from Europe and introduced common European breeds to Galicia.}, language = {en} } @article{HubrigSchoellerIlyinetal.2013, author = {Hubrig, Swetlana and Schoeller, M. and Ilyin, Ilya and Kharchenko, N. V. and Oskinova, Lida and Langer, N. and Gonzalez, J. F. and Kholtygin, A. F. and Briquet, Maryline}, title = {Exploring the origin of magnetic fields in massive stars - II. New magnetic field measurements in cluster and field stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {551}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {MAGORI Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201220721}, pages = {13}, year = {2013}, abstract = {Context. Theories on the origin of magnetic fields in massive stars remain poorly developed, because the properties of their magnetic field as function of stellar parameters could not yet be investigated. Additional observations are of utmost importance to constrain the conditions that are conducive to magnetic fields and to determine first trends about their occurrence rate and field strength distribution. Aims. To investigate whether magnetic fields in massive stars are ubiquitous or appear only in stars with a specific spectral classification, certain ages, or in a special environment, we acquired 67 new spectropolarimetric observations for 30 massive stars. Among the observed sample, roughly one third of the stars are probable members of clusters at different ages, whereas the remaining stars are field stars not known to belong to any cluster or association. Methods. Spectropolarimetric observations were obtained during four different nights using the low-resolution spectropolarimetric mode of FOcal Reducer low dispersion Spectrograph (FORS 2) mounted on the 8-m Antu telescope of the VLT. Furthermore, we present a number of follow-up observations carried out with the high-resolution spectropolarimeters SOFIN mounted at the Nordic Optical Telescope (NOT) and HARPS mounted at the ESO 3.6 m between 2008 and 2011. To assess the membership in open clusters and associations, we used astrometric catalogues with the highest quality kinematic and photometric data currently available. Results. The presence of a magnetic field is confirmed in nine stars previously observed with FORS 1/2: HD36879, HD47839, CPD-28 2561, CPD-47 2963, HD93843, HD148937, HD149757, HD328856, and HD164794. New magnetic field detections at a significance level of at least 3 sigma were achieved in five stars: HD92206c, HD93521, HD93632, CPD-46 8221, and HD157857. Among the stars with a detected magnetic field, five stars belong to open clusters with high membership probability. According to previous kinematic studies, five magnetic O-type stars in our sample are candidate runaway stars.}, language = {en} } @article{GonzalezGalanOskinovaPopovetal.2018, author = {Gonz{\´a}lez-Gal{\´a}n, Ana and Oskinova, Lida and Popov, Sergei B. and Haberl, F. and K{\"u}hnel, M. and Gallagher, John S. and Schurch, Matthew and Guerrero, M. A.}, title = {A multiwavelength study of SXP 1062, the long-period X-ray pulsar associated with a supernova remnant}, series = {Monthly notices of the Royal Astronomical Society}, volume = {475}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx3127}, pages = {2809 -- 2821}, year = {2018}, abstract = {SXP 1062 is a Be X-ray binary (BeXB) located in the Small Magellanic Cloud. It hosts a long-period X-ray pulsar and is likely associated with the supernova remnant MCSNR J0127-7332. In this work we present a multiwavelength view on SXP 1062 in different luminosity regimes. We consider monitoring campaigns in optical (OGLE survey) and X-ray (Swift telescope). During these campaigns a tight coincidence of X-ray and optical outbursts is observed. We interpret this as typical Type I outbursts as often detected in BeXBs at periastron passage of the neutron star (NS). To study different X-ray luminosity regimes in depth, during the source quiescence we observed it with XMM-Newton while Chandra observations followed an X-ray outburst. Nearly simultaneously with Chandra observations in X-rays, in optical the RSS/SALT telescope obtained spectra of SXP 1062. On the basis of our multiwavelength campaign we propose a simple scenario where the disc of the Be star is observed face-on, while the orbit of the NS is inclined with respect to the disc. According to the model of quasi-spherical settling accretion our estimation of the magnetic field of the pulsar in SXP 1062 does not require an extremely strong magnetic field at the present time.}, language = {en} } @book{RodriguezQuilesyGarciadeVugtOebelsbergeretal.2017, author = {Rodr{\´i}guez-Quiles y Garc{\´i}a, Jos{\´e} A. and de Vugt, Adri and Oebelsberger, Monika and Medňansk{\´a}, Irena and Dymon, Mirosław and Jank, Birgit and Garc{\´i}a, Jos{\´e} M. and Garc{\´i}a, Mar{\´i}a S. and Ar{\´u}s, Eug{\`e}nia and Vicente, Manuel R. and D{\´i}az, Ana and Gonz{\´a}lez, Germ{\´a}n and Guti{\´e}rrez, Carmen J. and del Fresno, Beatriz Mart{\´i}nez and Garc{\´i}a-Fl{\´o}rez, Llori{\´a}n and Quijano, Luc{\´i}a and Ca{\~n}as, Manuel}, title = {Internationale Perspektiven zur Musik(lehrer)ausbildung in Europa}, editor = {Rodr{\´i}guez-Quiles y Garc{\´i}a, Jos{\´e} A.}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-378-7}, issn = {2196-5080}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100717}, publisher = {Universit{\"a}t Potsdam}, pages = {292}, year = {2017}, abstract = {Das Bildungsgesetz der spanischen Regierung aus dem Jahre 2013 (sp. LOMCE) gilt als Todesstoß f{\"u}r k{\"u}nstlerische F{\"a}cher an allgemein bildenden Schulen: Erst 1990 als Pflichtfach eingef{\"u}hrt, wird Musik nun nur noch als Wahlfach angeboten. Auch die Musiklehrerausbildung an den Hochschulen verzeichnet massive Einbußen. Besonders irritierend daran ist, dass die betroffenen Universit{\"a}tsgremien zu dieser politischen Entscheidung nicht geh{\"o}rt wurden. Damit verschwindet in Spanien das Studienfach Lehramt Musik je nach Universit{\"a}t nach nicht einmal 18 bis 20 Jahren aus dem Studienangebot.}, language = {de} } @article{GonzalezHauckHerrmannHettihewaetal.2022, author = {Gonz{\´a}lez Hauck, Su{\´e} and Herrmann, Franziska and Hettihewa, Julian A. and Kraft, Dariush and Milas, Max and Springer, Stephanie and Weckner, Franka}, title = {Jurisdiction}, series = {Zeitschrift f{\"u}r ausl{\"a}ndisches {\"o}ffentliches Recht und V{\"o}lkerrecht}, volume = {82}, journal = {Zeitschrift f{\"u}r ausl{\"a}ndisches {\"o}ffentliches Recht und V{\"o}lkerrecht}, number = {2}, publisher = {C.H. Beck}, address = {M{\"u}nchen}, issn = {0044-2348}, doi = {10.17104/0044-2348-2022-2-289}, pages = {289 -- 298}, year = {2022}, language = {en} }