@article{KhiderEmileGeayMcKayetal.2019, author = {Khider, D. and Emile-Geay, J. and McKay, N. P. and Gil, Y. and Garijo, D. and Ratnakar, V and Alonso-Garcia, M. and Bertrand, S. and Bothe, O. and Brewer, P. and Bunn, A. and Chevalier, M. and Comas-Bru, L. and Csank, A. and Dassie, E. and DeLong, K. and Felis, T. and Francus, P. and Frappier, A. and Gray, W. and Goring, S. and Jonkers, L. and Kahle, M. and Kaufman, D. and Kehrwald, N. M. and Martrat, B. and McGregor, H. and Richey, J. and Schmittner, A. and Scroxton, N. and Sutherland, E. and Thirumalai, Kaustubh and Allen, K. and Arnaud, F. and Axford, Y. and Barrows, T. and Bazin, L. and Birch, S. E. Pilaar and Bradley, E. and Bregy, J. and Capron, E. and Cartapanis, O. and Chiang, H-W and Cobb, K. M. and Debret, M. and Dommain, R{\´e}ne and Du, J. and Dyez, K. and Emerick, S. and Erb, M. P. and Falster, G. and Finsinger, W. and Fortier, D. and Gauthier, Nicolas and George, S. and Grimm, E. and Hertzberg, J. and Hibbert, F. and Hillman, A. and Hobbs, W. and Huber, M. and Hughes, A. L. C. and Jaccard, S. and Ruan, J. and Kienast, M. and Konecky, B. and Le Roux, G. and Lyubchich, V and Novello, V. F. and Olaka, L. and Partin, J. W. and Pearce, C. and Phipps, S. J. and Pignol, C. and Piotrowska, N. and Poli, M-S and Prokopenko, A. and Schwanck, F. and Stepanek, C. and Swann, G. E. A. and Telford, R. and Thomas, E. and Thomas, Z. and Truebe, S. and von Gunten, L. and Waite, A. and Weitzel, N. and Wilhelm, B. and Williams, J. and Winstrup, M. and Zhao, N. and Zhou, Y.}, title = {PaCTS 1.0: A Crowdsourced Reporting Standard for Paleoclimate Data}, series = {Paleoceanography and paleoclimatology}, volume = {34}, journal = {Paleoceanography and paleoclimatology}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2572-4517}, doi = {10.1029/2019PA003632}, pages = {1570 -- 1596}, year = {2019}, abstract = {The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community-sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate data sets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive-specific properties and distinguished reporting standards for new versus legacy data sets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate data sets. Since such goals are at odds with present practices, we discuss a transparent path toward implementing or revising these recommendations in the near future, using both bottom-up and top-down approaches.}, language = {en} } @article{AtsawawaranuntComasBruMozhdehietal.2018, author = {Atsawawaranunt, Kamolphat and Comas-Bru, Laia and Mozhdehi, Sahar Amirnezhad and Deininger, Michael and Harrison, Sandy P. and Baker, Andy and Boyd, Meighan and Kaushal, Nikita and Ahmad, Syed Masood and Brahim, Yassine Ait and Arienzo, Monica and Bajo, Petra and Braun, Kerstin and Burstyn, Yuval and Chawchai, Sakonvan and Duan, Wuhui and Hatvani, Istvan Gabor and Hu, Jun and Kern, Zoltan and Labuhn, Inga and Lachniet, Matthew and Lechleitner, Franziska A. and Lorrey, Andrew and Perez-Mejias, Carlos and Pickering, Robyn and Scroxton, Nick and Atkinson, Tim and Ayalon, Avner and Baldini, James and Bar-Matthews, Miriam and Pablo Bernal, Juan and Breitenbach, Sebastian Franz Martin and Boch, Ronny and Borsato, Andrea and Cai, Yanjun and Carolin, Stacy and Cheng, Hai and Columbu, Andrea and Couchoud, Isabelle and Cruz, Francisco and Demeny, Attila and Dominguez-Villar, David and Dragusin, Virgil and Drysdale, Russell and Ersek, Vasile and Finne, Martin and Fleitmann, Dominik and Fohlmeister, Jens Bernd and Frappier, Amy and Genty, Dominique and Holzkamper, Steffen and Hopley, Philip and Kathayat, Gayatri and Keenan-Jones, Duncan and Koltai, Gabriella and Luetscher, Marc and Li, Ting-Yong and Lone, Mahjoor Ahmad and Markowska, Monika and Mattey, Dave and McDermott, Frank and Moreno, Ana and Moseley, Gina and Nehme, Carole and Novello, Valdir F. and Psomiadis, David and Rehfeld, Kira and Ruan, Jiaoyang and Sekhon, Natasha and Sha, Lijuan and Sholz, Denis and Shopov, Yavor and Smith, Andrew and Strikis, Nicolas and Treble, Pauline and Unal-Imer, Ezgi and Vaks, Anton and Vansteenberge, Stef and Veiga-Pires, Cristina and Voarintsoa, Ny Riavo and Wang, Xianfeng and Wong, Corinne and Wortham, Barbara and Wurtzel, Jennifer and Zong, Baoyun}, title = {The SISAL database}, series = {Earth System Science Data}, volume = {10}, journal = {Earth System Science Data}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, organization = {SISAL Working Grp Members}, issn = {1866-3508}, doi = {10.5194/essd-10-1687-2018}, pages = {1687 -- 1713}, year = {2018}, abstract = {Stable isotope records from speleothems provide information on past climate changes, most particularly information that can be used to reconstruct past changes in precipitation and atmospheric circulation. These records are increasingly being used to provide "out-of-sample" evaluations of isotope-enabled climate models. SISAL (Speleothem Isotope Synthesis and Analysis) is an international working group of the Past Global Changes (PAGES) project. The working group aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation. The SISAL database contains data for individual speleothems, grouped by cave system. Stable isotopes of oxygen and carbon (delta O-18, delta C-13) measurements are referenced by distance from the top or bottom of the speleothem. Additional tables provide information on dating, including information on the dates used to construct the original age model and sufficient information to assess the quality of each data set and to erect a standardized chronology across different speleothems. The metadata table provides location information, information on the full range of measurements carried out on each speleothem and information on the cave system that is relevant to the interpretation of the records, as well as citations for both publications and archived data.}, language = {en} } @article{ComasBruHarrisonWerneretal.2019, author = {Comas-Bru, Laia and Harrison, Sandy P. and Werner, Martin and Rehfeld, Kira and Scroxton, Nick and Veiga-Pires, Cristina and Ahmad, Syed Masood and Brahim, Yassine Ait and Mozhdehi, Sahar Amirnezhad and Arienzo, Monica and Atsawawaranunt, Kamolphat and Baker, Andy and Braun, Kerstin and Breitenbach, Sebastian Franz Martin and Burstyn, Yuval and Chawchai, Sakonvan and Columbu, Andrea and Deininger, Michael and Demeny, Attila and Dixon, Bronwyn and Hatvani, Istvan Gabor and Hu, Jun and Kaushal, Nikita and Kern, Zoltan and Labuhn, Inga and Lachniet, Matthew S. and Lechleitner, Franziska A. and Lorrey, Andrew and Markowska, Monika and Nehme, Carole and Novello, Valdir F. and Oster, Jessica and Perez-Mejias, Carlos and Pickering, Robyn and Sekhon, Natasha and Wang, Xianfeng and Warken, Sophie and Atkinson, Tim and Ayalon, Avner and Baldini, James and Bar-Matthews, Miryam and Bernal, Juan Pablo and Boch, Ronny and Borsato, Andrea and Boyd, Meighan and Brierley, Chris and Cai, Yanjun and Carolin, Stacy and Cheng, Hai and Constantin, Silviu and Couchoud, Isabelle and Cruz, Francisco and Denniston, Rhawn and Dragusin, Virgil and Duan, Wuhui and Ersek, Vasile and Finne, Martin and Fleitmann, Dominik and Fohlmeister, Jens Bernd and Frappier, Amy and Genty, Dominique and Holzkamper, Steffen and Hopley, Philip and Johnston, Vanessa and Kathayat, Gayatri and Keenan-Jones, Duncan and Koltai, Gabriella and Li, Ting-Yong and Lone, Mahjoor Ahmad and Luetscher, Marc and Mattey, Dave and Moreno, Ana and Moseley, Gina and Psomiadis, David and Ruan, Jiaoyang and Scholz, Denis and Sha, Lijuan and Smith, Andrew Christopher and Strikis, Nicolas and Treble, Pauline and Unal-Imer, Ezgi and Vaks, Anton and Vansteenberge, Stef and Voarintsoa, Ny Riavo G. and Wong, Corinne and Wortham, Barbara and Wurtzel, Jennifer and Zhang, Haiwei}, title = {Evaluating model outputs using integrated global speleothem records of climate change since the last glacial}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {15}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, organization = {SISAL Working Grp}, issn = {1814-9324}, doi = {10.5194/cp-15-1557-2019}, pages = {1557 -- 1579}, year = {2019}, abstract = {Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for data-model comparisons. Here, we illustrate this using 456 globally distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if data-model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model's ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on δ18O values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices.}, language = {en} }