@article{NegiPaulCescaetal.2017, author = {Negi, Sanjay S. and Paul, Ajay and Cesca, Simone and Kamal, and Kriegerowski, Marius and Mahesh, P. and Gupta, Sandeep}, title = {Crustal velocity structure and earthquake processes of Garhwal-Kumaun Himalaya: Constraints from regional waveform inversion and array beam modeling}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {712}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2017.05.007}, pages = {45 -- 63}, year = {2017}, abstract = {In order to understand present day earthquake kinematics at the Indian plate boundary, we analyse seismic broadband data recorded between 2007 and 2015 by the regional network in the Garhwal-Kumaun region, northwest Himalaya. We first estimate a local 1-D velocity model for the computation of reliable Green's functions, based on 2837 P-wave and 2680 S-wave arrivals from 251 well located earthquakes. The resulting 1-D crustal structure yields a 4-layer velocity model down to the depths of 20 km. A fifth homogeneous layer extends down to 46 km, constraining the Moho using travel-time distance curve method. We then employ a multistep moment tensor (MT) inversion algorithm to infer seismic moment tensors of 11 moderate earthquakes with Mw magnitude in the range 4.0-5.0. The method provides a fast MT inversion for future monitoring of local seismicity, since Green's functions database has been prepared. To further support the moment tensor solutions, we additionally model P phase beams at seismic arrays at teleseismic distances. The MT inversion result reveals the presence of dominant thrust fault kinematics persisting along the Himalayan belt. Shallow low and high angle thrust faulting is the dominating mechanism in the Garhwal-Kumaun Himalaya. The centroid depths for these moderate earthquakes are shallow between 1 and 12 km. The beam modeling result confirm hypocentral depth estimates between 1 and 7 km. The updated seismicity, constrained source mechanism and depth results indicate typical setting of duplexes above the mid crustal ramp where slip is confirmed along out-of-sequence thrusting. The involvement of Tons thrust sheet in out-of-sequence thrusting indicate Tons thrust to be the principal active thrust at shallow depth in the Himalayan region. Our results thus support the critical taper wedge theory, where we infer the microseismicity cluster as a result of intense activity within the Lesser Himalayan Duplex (LHD) system.}, language = {en} } @article{PlueDeFrenneAcharyaetal.2017, author = {Plue, Jan and De Frenne, Pieter and Acharya, Kamal and Brunet, J{\"o}rg and Chabrerie, Olivier and Decocq, Guillaume and Diekmann, Martin and Graae, Bente J. and Heinken, Thilo and Hermy, Martin and Kolb, Annette and Lemke, Isgard and Liira, Jaan and Naaf, Tobias and Verheyen, Kris and Wulf, Monika and Cousins, Sara A. O.}, title = {Where does the community start, and where does it end?}, series = {Journal of vegetation science}, volume = {28}, journal = {Journal of vegetation science}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1100-9233}, doi = {10.1111/jvs.12493}, pages = {424 -- 435}, year = {2017}, abstract = {QuestionBelow-ground processes are key determinants of above-ground plant population and community dynamics. Still, our understanding of how environmental drivers shape plant communities is mostly based on above-ground diversity patterns, bypassing below-ground plant diversity stored in seed banks. As seed banks may shape above-ground plant communities, we question whether concurrently analysing the above- and below-ground species assemblages may potentially enhance our understanding of community responses to environmental variation. LocationTemperate deciduous forests along a 2000km latitudinal gradient in NW Europe. MethodsHerb layer, seed bank and local environmental data including soil pH, canopy cover, forest cover continuity and time since last canopy disturbance were collected in 129 temperate deciduous forest plots. We quantified herb layer and seed bank diversity per plot and evaluated how environmental variation structured community diversity in the herb layer, seed bank and the combined herb layer-seed bank community. ResultsSeed banks consistently held more plant species than the herb layer. How local plot diversity was partitioned across the herb layer and seed bank was mediated by environmental variation in drivers serving as proxies of light availability. The herb layer and seed bank contained an ever smaller and ever larger share of local diversity, respectively, as both canopy cover and time since last canopy disturbance decreased. Species richness and -diversity of the combined herb layer-seed bank community responded distinctly differently compared to the separate assemblages in response to environmental variation in, e.g. forest cover continuity and canopy cover. ConclusionsThe seed bank is a below-ground diversity reservoir of the herbaceous forest community, which interacts with the herb layer, although constrained by environmental variation in e.g. light availability. The herb layer and seed bank co-exist as a single community by means of the so-called storage effect, resulting in distinct responses to environmental variation not necessarily recorded in the individual herb layer or seed bank assemblages. Thus, concurrently analysing above- and below-ground diversity will improve our ecological understanding of how understorey plant communities respond to environmental variation.}, language = {en} } @article{FagesHanghojKhanetal.2019, author = {Fages, Antoine and Hanghoj, Kristian and Khan, Naveed and Gaunitz, Charleen and Seguin-Orlando, Andaine and Leonardi, Michela and Constantz, Christian McCrory and Gamba, Cristina and Al-Rasheid, Khaled A. S. and Albizuri, Silvia and Alfarhan, Ahmed H. and Allentoft, Morten and Alquraishi, Saleh and Anthony, David and Baimukhanov, Nurbol and Barrett, James H. and Bayarsaikhan, Jamsranjav and Benecke, Norbert and Bernaldez-Sanchez, Eloisa and Berrocal-Rangel, Luis and Biglari, Fereidoun and Boessenkool, Sanne and Boldgiv, Bazartseren and Brem, Gottfried and Brown, Dorcas and Burger, Joachim and Crubezy, Eric and Daugnora, Linas and Davoudi, Hossein and Damgaard, Peter de Barros and de Chorro y de Villa-Ceballos, Maria de los Angeles and Deschler-Erb, Sabine and Detry, Cleia and Dill, Nadine and Oom, Maria do Mar and Dohr, Anna and Ellingvag, Sturla and Erdenebaatar, Diimaajav and Fathi, Homa and Felkel, Sabine and Fernandez-Rodriguez, Carlos and Garcia-Vinas, Esteban and Germonpre, Mietje and Granado, Jose D. and Hallsson, Jon H. and Hemmer, Helmut and Hofreiter, Michael and Kasparov, Aleksei and Khasanov, Mutalib and Khazaeli, Roya and Kosintsev, Pavel and Kristiansen, Kristian and Kubatbek, Tabaldiev and Kuderna, Lukas and Kuznetsov, Pavel and Laleh, Haeedeh and Leonard, Jennifer A. and Lhuillier, Johanna and von Lettow-Vorbeck, Corina Liesau and Logvin, Andrey and Lougas, Lembi and Ludwig, Arne and Luis, Cristina and Arruda, Ana Margarida and Marques-Bonet, Tomas and Silva, Raquel Matoso and Merz, Victor and Mijiddorj, Enkhbayar and Miller, Bryan K. and Monchalov, Oleg and Mohaseb, Fatemeh A. and Morales, Arturo and Nieto-Espinet, Ariadna and Nistelberger, Heidi and Onar, Vedat and Palsdottir, Albina H. and Pitulko, Vladimir and Pitskhelauri, Konstantin and Pruvost, Melanie and Sikanjic, Petra Rajic and Papesa, Anita Rapan and Roslyakova, Natalia and Sardari, Alireza and Sauer, Eberhard and Schafberg, Renate and Scheu, Amelie and Schibler, Jorg and Schlumbaum, Angela and Serrand, Nathalie and Serres-Armero, Aitor and Shapiro, Beth and Seno, Shiva Sheikhi and Shevnina, Irina and Shidrang, Sonia and Southon, John and Star, Bastiaan and Sykes, Naomi and Taheri, Kamal and Taylor, William and Teegen, Wolf-Rudiger and Vukicevic, Tajana Trbojevic and Trixl, Simon and Tumen, Dashzeveg and Undrakhbold, Sainbileg and Usmanova, Emma and Vahdati, Ali and Valenzuela-Lamas, Silvia and Viegas, Catarina and Wallner, Barbara and Weinstock, Jaco and Zaibert, Victor and Clavel, Benoit and Lepetz, Sebastien and Mashkour, Marjan and Helgason, Agnar and Stefansson, Kari and Barrey, Eric and Willerslev, Eske and Outram, Alan K. and Librado, Pablo and Orlando, Ludovic}, title = {Tracking five millennia of horse management with extensive ancient genome time series}, series = {Cell}, volume = {177}, journal = {Cell}, number = {6}, publisher = {Cell Press}, address = {Cambridge}, issn = {0092-8674}, doi = {10.1016/j.cell.2019.03.049}, pages = {1419 -- 1435}, year = {2019}, abstract = {Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (>= 1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modem legacy of past equestrian civilisations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modem breeding impacted genetic diversity more dramatically than the previous millennia of human management.}, language = {en} } @phdthesis{Rhaout2021, author = {Rhaout, Mohamed Kamal}, title = {The Impact of Motivational Factors on Employees' Turnover Intentions}, pages = {132}, year = {2021}, language = {de} } @article{BoschSmimou2022, author = {Bosch, David and Smimou, Kamal}, title = {Traders' motivation and hedging pressure in commodity futures markets}, series = {Research in international business and finance}, volume = {59}, journal = {Research in international business and finance}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0275-5319}, doi = {10.1016/j.ribaf.2021.101529}, pages = {34}, year = {2022}, abstract = {This study seeks to explain the major drivers of trading activity in commodity futures markets and gage the effect of trading activity on commodity prices. Rather than concentrating on a specific commodity subgroup or a particular type of commodity traders, we provide an extensive overview of the behavior across all market participants and their influence on commodity prices by using a broad set of commodity futures contracts. Although commodity futures returns show co-movement with financial fundamentals (U.S. dollar index, equity, and bond markets), based on the Disaggregated Commitment of Traders Report (DCOT), this relationship cannot be attributed to trading activity. Pricing in commodity markets can be predominantly attributed to hedgers and influential speculators (money managers), whereas small speculators (nonreportable traders) are crucial to some soft commodity futures similar to dealers in metals commodity futures. Furthermore, we find limited cases where inventory changes exert a sizable influence on position changes of DCOT traders.}, language = {en} } @article{SchloerHirschbergBenAmoretal.2022, author = {Schl{\"o}r, Anja and Hirschberg, Stefan and Ben Amor, Ghada and Meister, Toni Luise and Arora, Prerna and P{\"o}hlmann, Stefan and Hoffmann, Markus and Pf{\"a}nder, Stephanie and Eddin, Omar Kamal and Kamhieh-Milz, Julian and Hanack, Katja}, title = {SARS-CoV-2 neutralizing camelid heavy-chain-only antibodies as powerful tools for diagnostic and therapeutic applications}, series = {Frontiers in Immunology}, journal = {Frontiers in Immunology}, publisher = {Frontiers Media SA}, address = {Lausanne, Schweiz}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.930975}, pages = {1 -- 14}, year = {2022}, abstract = {Introduction: The ongoing COVID-19 pandemic situation caused by SARS-CoV-2 and variants of concern such as B.1.617.2 (Delta) and recently, B.1.1.529 (Omicron) is posing multiple challenges to humanity. The rapid evolution of the virus requires adaptation of diagnostic and therapeutic applications. Objectives: In this study, we describe camelid heavy-chain-only antibodies (hcAb) as useful tools for novel in vitro diagnostic assays and for therapeutic applications due to their neutralizing capacity. Methods: Five antibody candidates were selected out of a na{\"i}ve camelid library by phage display and expressed as full length IgG2 antibodies. The antibodies were characterized by Western blot, enzyme-linked immunosorbent assays, surface plasmon resonance with regard to their specificity to the recombinant SARS-CoV-2 Spike protein and to SARS-CoV-2 virus-like particles. Neutralization assays were performed with authentic SARS-CoV-2 and pseudotyped viruses (wildtype and Omicron). Results: All antibodies efficiently detect recombinant SARS-CoV-2 Spike protein and SARS-CoV-2 virus-like particles in different ELISA setups. The best combination was shown with hcAb B10 as catcher antibody and HRP-conjugated hcAb A7.2 as the detection antibody. Further, four out of five antibodies potently neutralized authentic wildtype SARS-CoV-2 and particles pseudotyped with the SARS-CoV-2 Spike proteins of the wildtype and Omicron variant, sublineage BA.1 at concentrations between 0.1 and 0.35 ng/mL (ND50). Conclusion: Collectively, we report novel camelid hcAbs suitable for diagnostics and potential therapy.}, language = {en} } @misc{SchloerHirschbergBenAmoretal.2022, author = {Schl{\"o}r, Anja and Hirschberg, Stefan and Ben Amor, Ghada and Meister, Toni Luise and Arora, Prerna and P{\"o}hlmann, Stefan and Hoffmann, Markus and Pf{\"a}nder, Stephanie and Eddin, Omar Kamal and Kamhieh-Milz, Julian and Hanack, Katja}, title = {SARS-CoV-2 neutralizing camelid heavy-chain-only antibodies as powerful tools for diagnostic and therapeutic applications}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1280}, issn = {1866-8372}, doi = {10.25932/publishup-57012}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570124}, pages = {14}, year = {2022}, abstract = {Introduction: The ongoing COVID-19 pandemic situation caused by SARS-CoV-2 and variants of concern such as B.1.617.2 (Delta) and recently, B.1.1.529 (Omicron) is posing multiple challenges to humanity. The rapid evolution of the virus requires adaptation of diagnostic and therapeutic applications. Objectives: In this study, we describe camelid heavy-chain-only antibodies (hcAb) as useful tools for novel in vitro diagnostic assays and for therapeutic applications due to their neutralizing capacity. Methods: Five antibody candidates were selected out of a na{\"i}ve camelid library by phage display and expressed as full length IgG2 antibodies. The antibodies were characterized by Western blot, enzyme-linked immunosorbent assays, surface plasmon resonance with regard to their specificity to the recombinant SARS-CoV-2 Spike protein and to SARS-CoV-2 virus-like particles. Neutralization assays were performed with authentic SARS-CoV-2 and pseudotyped viruses (wildtype and Omicron). Results: All antibodies efficiently detect recombinant SARS-CoV-2 Spike protein and SARS-CoV-2 virus-like particles in different ELISA setups. The best combination was shown with hcAb B10 as catcher antibody and HRP-conjugated hcAb A7.2 as the detection antibody. Further, four out of five antibodies potently neutralized authentic wildtype SARS-CoV-2 and particles pseudotyped with the SARS-CoV-2 Spike proteins of the wildtype and Omicron variant, sublineage BA.1 at concentrations between 0.1 and 0.35 ng/mL (ND50). Conclusion: Collectively, we report novel camelid hcAbs suitable for diagnostics and potential therapy.}, language = {en} } @article{PlueDeFrenneAcharyaetal.2013, author = {Plue, Jan and De Frenne, Pieter and Acharya, Kamal P. and Brunet, Jorg and Chabrerie, Olivier and Decocq, Guillaume and Diekmann, Martin and Graae, Bente J. and Heinken, Thilo and Hermy, Martin and Kolb, Annette and Lemke, Isgard and Liira, Jaan and Naaf, Tobias and Shevtsova, Anna and Verheyen, Kris and Wulf, Monika and Cousins, Sara A. O.}, title = {Climatic control of forest herb seed banks along a latitudinal gradient}, series = {Global ecology and biogeography : a journal of macroecology}, volume = {22}, journal = {Global ecology and biogeography : a journal of macroecology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1466-822X}, doi = {10.1111/geb.12068}, pages = {1106 -- 1117}, year = {2013}, abstract = {Aim Seed banks are central to the regeneration strategy of many plant species. Any factor altering seed bank density thus affects plant regeneration and population dynamics. Although seed banks are dynamic entities controlled by multiple environmental drivers, climatic factors are the most comprehensive, but still poorly understood. This study investigates how climatic variation structures seed production and resulting seed bank patterns. Location Temperate forests along a 1900km latitudinal gradient in north-western (NW) Europe. Methods Seed production and seed bank density were quantified in 153 plots along the gradient for four forest herbs with different seed longevity: Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica. We tested the importance of climatic and local environmental factors in shaping seed production and seed bank density. Results Seed production was determined by population size, and not by climatic factors. G.urbanum and M.effusum seed bank density declined with decreasing temperature (growing degree days) and/or increasing temperature range (maximum-minimum temperature). P.nemoralis and S.sylvatica seed bank density were limited by population size and not by climatic variables. Seed bank density was also influenced by other, local environmental factors such as soil pH or light availability. Different seed bank patterns emerged due to differential seed longevities. Species with long-lived seeds maintained constant seed bank densities by counteracting the reduced chance of regular years with high seed production at colder northern latitudes. Main conclusions Seed bank patterns show clear interspecific variation in response to climate across the distribution range. Not all seed banking species may be as well equipped to buffer climate change via their seed bank, notably in short-term persistent species. Since the buffering capacity of seed banks is key to species persistence, these results provide crucial information to advance climatic change predictions on range shifts, community and biodiversity responses.}, language = {en} } @article{LemkeKolbGraaeetal.2015, author = {Lemke, Isgard H. and Kolb, Annette and Graae, Bente J. and De Frenne, Pieter and Acharya, Kamal P. and Blandino, Cristina and Brunet, Jorg and Chabrerie, Olivier and Cousins, Sara A. O. and Decocq, Guillaume and Heinken, Thilo and Hermy, Martin and Liira, Jaan and Schmucki, Reto and Shevtsova, Anna and Verheyen, Kris and Diekmann, Martin}, title = {Patterns of phenotypic trait variation in two temperate forest herbs along a broad climatic gradient}, series = {Plant ecology : an international journal}, volume = {216}, journal = {Plant ecology : an international journal}, number = {11}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-015-0534-0}, pages = {1523 -- 1536}, year = {2015}, abstract = {Phenotypic trait variation plays a major role in the response of plants to global environmental change, particularly in species with low migration capabilities and recruitment success. However, little is known about the variation of functional traits within populations and about differences in this variation on larger spatial scales. In a first approach, we therefore related trait expression to climate and local environmental conditions, studying two temperate forest herbs, Milium effusum and Stachys sylvatica, along a similar to 1800-2500 km latitudinal gradient. Within each of 9-10 regions in six European countries, we collected data from six populations of each species and recorded several variables in each region (temperature, precipitation) and population (light availability, soil parameters). For each plant, we measured height, leaf area, specific leaf area, seed mass and the number of seeds and examined environmental effects on within-population trait variation as well as on trait means. Most importantly, trait variation differed both between and within populations. Species, however, differed in their response. Intrapopulation variation in Milium was consistently positively affected by higher mean temperatures and precipitation as well as by more fertile local soil conditions, suggesting that more productive conditions may select for larger phenotypic variation. In Stachys, particularly light availability positively influenced trait variation, whereas local soil conditions had no consistent effects. Generally, our study emphasises that intra-population variation may differ considerably across larger scales-due to phenotypic plasticity and/or underlying genetic diversity-possibly affecting species response to global environmental change.}, language = {en} } @article{RanaOeztuerkMalik2021, author = {Rana, Kamal and {\"O}zt{\"u}rk, Ugur and Malik, Nishant}, title = {Landslide geometry reveals its trigger}, series = {Geophysical research letters : GRL / American Geophysical Union}, volume = {48}, journal = {Geophysical research letters : GRL / American Geophysical Union}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2020GL090848}, pages = {8}, year = {2021}, abstract = {Electronic databases of landslides seldom include the triggering mechanisms, rendering these inventories unusable for landslide hazard modeling. We present a method for classifying the triggering mechanisms of landslides in existing inventories, thus, allowing these inventories to aid in landslide hazard modeling corresponding to the correct event chain. Our method uses various geometric characteristics of landslides as the feature space for the machine-learning classifier random forest, resulting in accurate and robust classifications of landslide triggers. We applied the method to six landslide inventories spread over the Japanese archipelago in several different tests and training configurations to demonstrate the effectiveness of our approach. We achieved mean accuracy ranging from 67\% to 92\%. We also provide an illustrative example of a real-world usage scenario for our method using an additional inventory with unknown ground truth. Furthermore, our feature importance analysis indicates that landslides having identical trigger mechanisms exhibit similar geometric properties.}, language = {en} }