@article{ZerballLaschewskyvonKlitzing2015, author = {Zerball, Maximilian and Laschewsky, Andr{\´e} and von Klitzing, Regine}, title = {Swelling of Polyelectrolyte Multilayers: The Relation Between, Surface and Bulk Characteristics}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {119}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {35}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.5b04350}, pages = {11879 -- 11886}, year = {2015}, abstract = {The odd even effect, i.e., the influence of the outermost layer of polyelectrolyte multilayers (PEMs) on their swelling behavior, is investigated. For that purpose poly(styrene sodium sulfonate) (PSS)/poly(diallyl-dimethylammonium chloride) (PDADMAC) polyelectrolyte multilayers are studied in air with 1\% relative humidity (RH), 30\% RH, 95\% RH, and in liquid water by ellipsometry, atomic force microscopy (AFM), and X-ray reflectometry (XRR). Since the total amount of water uptake in swollen PEMs is divided into two fractions, the void water and the swelling water, a correct evaluation of the odd even effect is only possible if both fractions are examined separately. In order to allow measuring samples over a larger thickness regime the investigation of a larger amount of samples is required. Therefore, the concept of separating void water from swelling water using neutron reflectometry is for the first time transferred to ellipsometry. The subsequent analysis of swelling water, void water, and roughness revealed the existence of two types of odd even effects: an odd even effect which addresses only the surface of the PEM (surface-odd even effect) and an odd even effect which addresses also the bulk of the PEM (bulk-odd even effect). The appearance of both effects is dependent on the environment; the surface-odd even effect is only detectable in humid air while the bulk-odd even effect is only detectable in liquid water. The bulk-odd even effect is related to the osmotic pressure between the PEM and the surrounding water. A correlation between the amount of void water and both odd even effects is not found. The amount of void water is independent of the terminated layer and the thickness of PEMs.}, language = {en} } @article{vonKlitzingStehlPogrzebaetal.2017, author = {von Klitzing, Regine and Stehl, Dimitrij and Pogrzeba, Tobias and Schoma{\"a}cker, Reinhard and Minullina, Renata and Panchal, Abhishek and Konnova, Svetlana and Fakhrullin, Rawil and Koetz, Joachim and Moehwald, Helmuth and Lvov, Yuri}, title = {Halloysites Stabilized Emulsions for Hydroformylation of Long Chain Olefins}, series = {Advanced materials interfaces}, volume = {4}, journal = {Advanced materials interfaces}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.201600435}, pages = {8}, year = {2017}, abstract = {Halloysites as tubular alumosilicates are introduced as inexpensive natural nanoparticles to form and stabilize oil-water emulsions. This stabilized emulsion is shown to enable efficient interfacial catalytic reactions. Yield, selectivity, and product separation can be tremendously enhanced, e.g., for the hydroformylation reaction of dodecene to tridecanal. In perspective, this type of formulation may be used for oil spill dispersions. The key elements of the described formulations are clay nanotubes (halloysites) which are highly anisometric, can be filled by helper molecules, and are abundantly available in thousands of tons, making this technology scalable for industrial applications.}, language = {en} } @article{VargasRuizSchulreichKostevicetal.2016, author = {Vargas-Ruiz, Salome and Schulreich, Christoph and Kostevic, Angelika and Tiersch, Brigitte and Koetz, Joachim and Kakorin, Sergej and von Klitzing, Regine and Jung, Martin and Hellweg, Thomas and Wellert, Stefan}, title = {Extraction of model contaminants from solid surfaces by environmentally compatible microemulsions}, series = {Journal of colloid and interface science}, volume = {471}, journal = {Journal of colloid and interface science}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9797}, doi = {10.1016/j.jcis.2016.03.006}, pages = {118 -- 126}, year = {2016}, abstract = {In the present contribution, we evaluate the efficiency of eco-friendly microemulsions to decontaminate solid surfaces by monitoring the extraction of non-toxic simulants of sulfur mustard out of model surfaces. The extraction process of the non-toxic simulants has been monitored by means of spectroscopic and chromatographic techniques. The kinetics of the removal process was analyzed by different empirical models. Based on the analysis of the kinetics, we can assess the influence of the amounts of oil and water and the microemulsion structure on the extraction process. (C) 2016 Elsevier Inc. All rights reserved.}, language = {en} } @article{KristenHochreinLaschewskyMilleretal.2011, author = {Kristen-Hochrein, Nora and Laschewsky, Andr{\´e} and Miller, Reinhard and von Klitzing, Regine}, title = {Stability of foam Films of oppositely charged polyelectrolyte/surfactant mixtures - effect of isoelectric point}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {115}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {49}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp206964k}, pages = {14475 -- 14483}, year = {2011}, abstract = {In the present paper, the influence of the surfactant concentration and the degree of charge of a polymer on foam film properties of oppositely charged polyelectrolyte/surfactant mixtures has been investigated. To verify the assumption that the position of the isoelectric point (IEP) does not change the character of the foam film stabilities, the position of the IEP of the polyelectrolyte/surfactant mixtures has been shifted in two different ways. Within the first series of experiments, the foam. film properties were studied using a fixed surfactant concentration of 3 x 10(-5) M in the mixture. Due to the low surfactant concentration, this is a rather dilute system. In the second approach, a copolymer of nonionic and ionic monomer units was Used to lower the charge density of the polymer. This gave rise to additional interactions between the polyelectrolyte and the surfactant, which makes the description of the foam film behavior more complex. In both systems, the same characteristics of the foam film stabilities were found: The foam film stability is reduced toward the IEP of the system, followed by a destabilization around the IEP., At polyelectrolyte concentrations above the IEP, foam films are very stable. However, the concentration range where unstable films were formed was rather broad, and the mechanisms leading to the destabilization had different origins. The results were compared with former findings on PAMPS/C(14)TAB mixtures with an IEP of 10(-4)M.(1)}, language = {en} } @article{DodooBalzerHugeletal.2013, author = {Dodoo, Samuel and Balzer, Bizan N. and Hugel, Thorsten and Laschewsky, Andr{\´e} and von Klitzing, Regine}, title = {Effect of ionic strength and layer number on swelling of polyelectrolyte multilayers in water vapour}, series = {Soft materials}, volume = {11}, journal = {Soft materials}, number = {2}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {1539-445X}, doi = {10.1080/1539445X.2011.607203}, pages = {157 -- 164}, year = {2013}, abstract = {The swelling behavior of polyelectrolyte multilayers (PEMs) of poly(sodium-4 styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared from aqueous solution of 0.1 M and 0.5 M NaCl are investigated by ellipsometry and Atomic Force Microscopy (AFM). From 1 double-layer up to 4 double-layers of 0.1 M NaCl, the amount of swelling water in the PEMs decreases with increasing number of adsorbed double layers due to an increase in polyelectrolyte density as a result of the attraction between the positively charged outermost PDADMAC layer and the Si substrate. From 6 double layers to 30 double layers, the attraction is reduced due to a much larger distance between substrate and outermost layer leading to a much lower polyelectrolyte density and higher swelling water. In PEMs prepared from aqueous solution of 0.5 M NaCl, the amount of water constantly increases which is related to a monotonically decreasing polyelectrolyte density with increasing number of polyelectrolyte layers. Studies of the surface topology also indicate a transition from a more substrate affected interphase behavior to a continuum properties of the polyelectrolyte multilayers. The threshold for the transition from interphase to continuum behavior depends on the preparation conditions of the PEM.}, language = {en} } @article{DodooSteitzLaschewskyetal.2011, author = {Dodoo, S. and Steitz, R. and Laschewsky, Andr{\´e} and von Klitzing, Regine}, title = {Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {13}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {21}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c0cp01357a}, pages = {10318 -- 10325}, year = {2011}, abstract = {This study addresses the effect of ionic strength and type of ions on the structure and water content of polyelectrolyte multilayers. Polyelectrolyte multilayers of poly(sodium-4-styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared at different NaF, NaCl and NaBr concentrations have been investigated by neutron reflectometry against vacuum, H2O and D2O. Both thickness and water content of the multilayers increase with increasing ionic strength and increasing ion size. Two types of water were identified, "void water" which fills the voids of the multilayers and does not contribute to swelling but to a change in scattering length density and "swelling water" which directly contributes to swelling of the multilayers. The amount of void water decreases with increasing salt concentration and anion radius while the amount of swelling water increases with salt concentration and anion radius. This is interpreted as a denser structure in the dry state and larger ability to swell in water (sponge) for multilayers prepared from high ionic strengths and/or salt solution of large anions. No exchange of hydration water or replacement of H by D was detected even after eight hours incubation time in water of opposing isotopic composition.}, language = {en} }