@article{LeiendeckerLichtBorghsetal.2018, author = {Leiendecker, Mai-Thi and Licht, Christopher J. and Borghs, Jannik and Mooney, David J. and Zimmermann, Marc and B{\"o}ker, Alexander}, title = {Physical polyurethane hydrogels via charge shielding through acids or salts}, series = {Macromolecular rapid communications}, volume = {39}, journal = {Macromolecular rapid communications}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201700711}, pages = {5}, year = {2018}, abstract = {Physical hydrogels with tunable stress-relaxation and excellent stress recovery are formed from anionic polyurethanes via addition of acids, monovalent salts, or divalent salts. Gel properties can be widely adjusted through pH, salt valence, salt concentration, and monomer composition. We propose and investigate a novel gelation mechanism based on a colloidal system interacting through charge repulsion and chrage shielding, allowing a broad use of the material, from acidic (pH 4-5.5) to pH-neutral hydrogels with Young's moduli ranging from 10 to 140 kPa.}, language = {en} } @article{WeberOesterheltGrossetal.2004, author = {Weber, Andreas P. M. and Oesterhelt, Christine and Gross, Wolfgang and Br{\"a}utigam, Andrea and Imboden, Lori and Krassovskaya, Inga and Linka, Nicole and Truchina, Julia and Schneidereit, J{\"o}rg and Voll, Lars and Zimmermann, Marc and Jamai, Aziz and Riekhof, Wayne and Yu, Bin and Garavito, Michael R. and Benning, Christoph}, title = {EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts}, year = {2004}, abstract = {When we think of extremophiles, organisms adapted to extreme environments, prokaryotes come to mind first. However, the unicellular red micro-alga Galdieria sulphuraria (Cyanidiales) is a eukaryote that can represent up to 90\% of the biomass in extreme habitats such as hot sulfur springs with pH values of 0-4 and temperatures of up to 56 degreesC. This red alga thrives autotrophically as well as heterotrophically on more than 50 different carbon sources, including a number of rare sugars and sugar alcohols. This biochemical versatility suggests a large repertoire of metabolic enzymes, rivaled by few organisms and a potentially rich source of thermo-stable enzymes for biotechnology. The temperatures under which this organism carries out photosynthesis are at the high end of the range for this process, making G. sulphuraria a valuable model for physical studies on the photosynthetic apparatus. In addition, the gene sequences of this living fossil reveal much about the evolution of modern eukaryotes. Finally, the alga tolerates high concentrations of toxic metal ions such as cadmium, mercury, aluminum, and nickel, suggesting potential application in bioremediation. To begin to explore the unique biology of G. sulphuraria, 5270 expressed sequence tags from two different cDNA libraries have been sequenced and annotated. Particular emphasis has been placed on the reconstruction of metabolic pathways present in this organism. For example, we provide evidence for (i) a complete pathway for lipid A biosynthesis; (ii) export of triose-phosphates from rhodoplasts; (iii) and absence of eukaryotic hexokinases. Sequence data and additional information are available at http://genomics.msu.edu/galdieria}, language = {en} } @article{ZimmermannGrigorievPuretskiyetal.2018, author = {Zimmermann, Marc and Grigoriev, Dmitry and Puretskiy, Nikolay and B{\"o}ker, Alexander}, title = {Characteristics of microcontact printing with polyelectrolyte ink for the precise preparation of patches on silica particles}, series = {RSC Advances}, volume = {8}, journal = {RSC Advances}, number = {69}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c8ra07955b}, pages = {39241 -- 39247}, year = {2018}, abstract = {This publication demonstrates the abilities of a precise and straightforward microcontact printing approach for the preparation of patchy silica particles. In a broad particle size range, it is possible to finely tune the number and parameters of three-dimensional patches like diameter and thickness using only polyethyleneimine ink, poly(dimethoxysilane) as stamp material and a suitable release solvent.}, language = {en} } @article{JohnZimmermannBoeker2018, author = {John, Daniela and Zimmermann, Marc and B{\"o}ker, Alexander}, title = {Generation of 3-dimensional multi-patches on silica particles via printing with wrinkled stamps}, series = {Soft matter}, volume = {14}, journal = {Soft matter}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c8sm00224j}, pages = {3057 -- 3062}, year = {2018}, abstract = {A simple route towards patchy particles with anisotropic patches with respect to a different functionality and directionality is presented. This method is based on microcontact printing of positively charged polyethylenimine (PEI) on silica particles using wrinkled stamps. Due to the wrinkled surface, the number of patches on the particles as well as the distance between two patches can be controlled.}, language = {en} } @article{ZimmermannJohnGrigorievetal.2018, author = {Zimmermann, Marc and John, Daniela and Grigoriev, Dmitry and Puretskiy, Nikolay and B{\"o}ker, Alexander}, title = {From 2D to 3D patches on multifunctional particles}, series = {Soft matter}, volume = {14}, journal = {Soft matter}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c8sm00163d}, pages = {2301 -- 2309}, year = {2018}, abstract = {A straightforward approach for the precise multifunctional surface modification of particles with three-dimensional patches using microcontact printing is presented. By comparison to previous works it was possible to not only control the diameter, but also to finely tune the thickness of the deposited layer, opening up the way for three-dimensional structures and orthogonal multifunctionality. The use of PEI as polymeric ink, PDMS stamps for microcontact printing on silica particles and the influence of different solvents during particle release on the creation of functional particles with three-dimensional patches are described. Finally, by introducing fluorescent properties by incorporation of quantum dots into patches and by particle self-assembly via avidin-biotin coupling, the versatility of this novel modification method is demonstrated.}, language = {en} } @article{KathreinPesterRuppeletal.2016, author = {Kathrein, Christine C. and Pester, Christian and Ruppel, Markus and Jung, Maike and Zimmermann, Marc and B{\"o}ker, Alexander}, title = {Reorientation mechanisms of block copolymer/CdSe quantum dot composites under application of an electric field}, series = {Soft matter}, volume = {12}, journal = {Soft matter}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c6sm01073c}, pages = {8417 -- 8424}, year = {2016}, abstract = {Time- and temperature-resolved in situ birefringence measurements were applied to analyze the effect of nanoparticles on the electric field-induced alignment of a microphase separated solution of poly(styrene)-block-poly(isoprene) in toluene. Through the incorporation of isoprene-confined CdSe quantum dots the reorientation behavior is altered. Particle loading lowers the order-disorder transition temperature, and increases the defect density, favoring nucleation and growth as an alignment mechanism over rotation of grains. The temperature dependent alteration in the reorientation mechanism is analyzed via a combination of birefringence and synchrotron SAXS. The detailed understanding of the effect of nanoparticles on the reorientation mechanism is an important prerequisite for optimization of electricfield-induced alignment of block copolymer/nanoparticle composites where the block copolymer guides the nanoparticle self-assembly into anisotropic structures.}, language = {en} } @article{ZimmermannStompsSchulteOsseilietal.2020, author = {Zimmermann, Marc and Stomps, Benjamin Ren{\´e} Harald and Schulte-Osseili, Christine and Grigoriev, Dmitry and Ewen, Dirk and Morgan, Andrew and B{\"o}ker, Alexander}, title = {Organic dye anchor peptide conjugates as an advanced coloring agent for polypropylene yarn}, series = {Textile Research Journal}, volume = {91}, journal = {Textile Research Journal}, number = {1-2}, publisher = {Sage Publ.}, address = {London}, issn = {0040-5175}, doi = {10.1177/0040517520932231}, pages = {28 -- 39}, year = {2020}, abstract = {Polypropylene as one of the world's top commodity polymers is also widely used in the textile industry. However, its non-polar nature and partially crystalline structure significantly complicate the process of industrial coloring of polypropylene. Currently, textiles made of polypropylene or with a significant proportion of polypropylene are dyed under quite harsh conditions, including the use of high pressures and temperatures, which makes this process energy intensive. This research presents a three-step synthesis of coloring agents, capable of adhering onto synthetic polypropylene yarns without harsh energy-consuming conditions. This is possible by encapsulation of organic pigments using trimethoxyphenylsilane, introduction of surface double bonds via modification of the silica shell with trimethoxysilylpropylmethacrylate and final attachment of highly adhesive anchor peptides using thiol-ene chemistry. We demonstrate the applicability of this approach by dyeing polypropylene yarns in a simple process under ambient conditions after giving a step-by-step guide for the synthesis of these new dyeing agents. Finally, the successful dyeing of the yarns is visualized, and its practicability is discussed.}, language = {en} }