@misc{MarrucciZeilingerRibolinietal.2018, author = {Marrucci, Monica and Zeilinger, Gerold and Ribolini, Adriano and Schwanghart, Wolfgang}, title = {Origin of knickpoints in an alpine context subject to different perturbing factors, Stura Valley, Maritime Alps (North-Western Italy)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1070}, issn = {1866-8372}, doi = {10.25932/publishup-47264}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472642}, pages = {22}, year = {2018}, abstract = {Natural catchments are likely to show the existence of knickpoints in their river networks. The origin and genesis of the knickpoints can be manifold, considering that the present morphology is the result of the interactions of different factors such as tectonic movements, quaternary glaciations, river captures, variable lithology, and base-level changes. We analyzed the longitudinal profiles of the river channels in the Stura di Demonte Valley (Maritime Alps) to identify the knickpoints of such an alpine setting and to characterize their origins. The distribution and the geometry of stream profiles were used to identify the possible causes of the changes in stream gradients and to define zones with genetically linked knickpoints. Knickpoints are key geomorphological features for reconstructing the evolution of fluvial dissected basins, when the different perturbing factors affecting the ideally graded fluvial system have been detected. This study shows that even in a regionally small area, perturbations of river profiles are caused by multiple factors. Thus, attributing (automatically)-extracted knickpoints solely to one factor, can potentially lead to incomplete interpretations of catchment evolution.}, language = {en} } @article{MarrucciZeilingerRibolinietal.2018, author = {Marrucci, Monica and Zeilinger, Gerold and Ribolini, Adriano and Schwanghart, Wolfgang}, title = {Origin of Knickpoints in an Alpine Context Subject to Different Perturbing Factors, Stura Valley, Maritime Alps (North-Western Italy)}, series = {Geosciences}, volume = {8}, journal = {Geosciences}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2076-3263}, doi = {10.3390/geosciences8120443}, pages = {20}, year = {2018}, abstract = {Natural catchments are likely to show the existence of knickpoints in their river networks. The origin and genesis of the knickpoints can be manifold, considering that the present morphology is the result of the interactions of different factors such as tectonic movements, quaternary glaciations, river captures, variable lithology, and base-level changes. We analyzed the longitudinal profiles of the river channels in the Stura di Demonte Valley (Maritime Alps) to identify the knickpoints of such an alpine setting and to characterize their origins. The distribution and the geometry of stream profiles were used to identify the possible causes of the changes in stream gradients and to define zones with genetically linked knickpoints. Knickpoints are key geomorphological features for reconstructing the evolution of fluvial dissected basins, when the different perturbing factors affecting the ideally graded fluvial system have been detected. This study shows that even in a regionally small area, perturbations of river profiles are caused by multiple factors. Thus, attributing (automatically)-extracted knickpoints solely to one factor, can potentially lead to incomplete interpretations of catchment evolution.}, language = {en} } @article{GaoZeilingerXuetal.2013, author = {Gao, Mingxing and Zeilinger, Gerold and Xu, Xiwei and Wang, Qingliang and Hao, Ming}, title = {DEM and GIS analysis of geomorphic indices for evaluating recent uplift of the northeastern margin of the Tibetan Plateau, China}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {190}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, number = {20}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2013.02.008}, pages = {61 -- 72}, year = {2013}, abstract = {The northeastern margin of the Tibetan Plateau is a tectonically active region consisting of a series of faults with bounded intermountain basins and is located in the transition zone between the Tibetan Plateau and the Loess Plateau. Active deformation that may affect the topography in this region can be quantified using geomorphic indices. Therefore, we applied geomorphic indices such as the hypsometric integral and the stream length gradient index to infer neo-tectonics in the northeastern margin of the Tibetan Plateau. Different time-scaled geodetic leveling data and river incision rates were also integrated into the investigation. The results show that the hypsometric integrals are not significantly affected by lithology but spatially correspond to the hanging walls of thrust faults. The hypsometric integrals are also positively correlated with the leveling data. Although the stream length gradient index is influenced by lithology, its most pronounced anomalies of the stream length gradient are associated with the thrust faults. Consequently, the uplift in the northeast margin of the Tibetan Plateau appeared to be concentrated along the hanging walls of the thrust faults.}, language = {en} } @article{HaghipourBurgKoberetal.2012, author = {Haghipour, Negar and Burg, Jean-Pierre and Kober, Florian and Zeilinger, Gerold and Ivy-Ochs, Susan and Kubik, Peter W. and Faridi, Mohammad}, title = {Rate of crustal shortening and non-Coulomb behaviour of an active accretionary wedge - the folded fluvial terraces in Makran (SE, Iran)}, series = {Earth \& planetary science letters}, volume = {355}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.09.001}, pages = {187 -- 198}, year = {2012}, abstract = {We surveyed fluvial terraces to decipher the Quaternary increment of crustal shortening and shortening rate in the on-shore Makran Accretionary Wedge. We focused on three major catchment basins and associated fold systems. Terrace profiles reconstructed from differential GPS measurements combined with DEM revealed two regional dominant wavelengths, about 5 km in the northern part of the study area and about 15 km to the south. These two wavelengths suggest the existence of two active decollement layers at two rooting depths. The average shortening rate due to folding is estimated at 0.8-1.2 mm/a over the last 130 ka. This accounts for 10-15\% of the shortening rate (similar to 8 mm/a) given by kinematic GPS measurements between Chabahar and Bazman and 3\% of the convergence between Arabia and Eurasia, across the Makran subduction zone. Despite active deformation and a relatively high shortening rate, the geophysical record shows nearly absent seismic activity in Makran. We propose that strain accumulated in folds over intermediate decollement levels within a thick, incompletely lithified sedimentary cover explains the essentially aseismic, recent tectonics in this region. The importance of folds points to imperfect Coulomb behaviour of the wedge. (C) 2012 Elsevier B.V. All rights reserved.}, language = {en} } @article{KoberZeilingerHippeetal.2015, author = {Kober, Florian and Zeilinger, Gerold and Hippe, Kristina and Marc, Odin and Lendzioch, Theodora and Grischott, Reto and Christl, Marcus and Kubik, Peter W. and Zola, Ramiro}, title = {Tectonic and lithological controls on denudation rates in the central Bolivian Andes}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {657}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2015.06.037}, pages = {230 -- 244}, year = {2015}, abstract = {The topographic signature of a mountain belt depends on the interplay of tectonic, climatic and erosional processes, whose relative importance changes over times, while quantifying these processes and their rates at specific times remains a challenge. The eastern Andes of central Bolivia offer a natural laboratory in which such interplay has been debated. Here, we investigate the Rio Grande catchment which crosses orthogonally the eastern Andes orogen from the Eastern Cordillera into the Subandean Zone, exhibiting a catchment relief of up to 5000 m. Despite an enhanced tectonic activity in the Subandes, local relief, mean and modal slopes and channel steepness indices are largely similar compared to the Eastern Cordillera and the intervening Interandean Zone. Nevertheless, a dataset of 57 new cosmogenic 10Be and 26AI catchment wide denudation rates from the Rio Grande catchment reveals up to one order of magnitude higher denudation rates in the Subandean Zone (mean 0.8 mm/yr) compared to the upstream physiographic regions. We infer that tectonic activity in the thrusting dominated Subandean belt causes higher denudation rates based on cumulative rock uplift investigations and due to the absence of a pronounced climate gradient. Furthermore, the lower rock strength of the Subandean sedimentary units correlates with mean slopes similar to the ones of the Eastern Cordillera and Interandean Zone, highlighting the fact, that lithology and rock strength can control high denudation rates at low slopes. Low denudation rates measured at the outlet of the Rio Grande catchment (Abapo) are interpreted to be a result of a biased cosmogenic nuclide mixing that is dominated by headwater signals from the Eastern Cordillera and the Interandean zone and limited catchment sediment connectivity in the lower river reaches. Therefore, comparisons of short- (i.e., sediment yield) and millennial denudation rates require caution when postulating tectonic and/or climatic forcing without detailed studies. (C) 2015 The Authors. Published by Elsevier B.V.}, language = {en} } @article{HippeKoberZeilingeretal.2012, author = {Hippe, Kristina and Kober, Florian and Zeilinger, Gerold and Ivy-Ochs, Susan and Maden, Colin and Wacker, Lukas and Kubik, Peter W. and Wieler, Rainer}, title = {Quantifying denudation rates and sediment storage on the eastern Altiplano, Bolivia, using cosmogenic Be-10, Al-26, and in situ C-14}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {179}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, number = {22}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2012.07.031}, pages = {58 -- 70}, year = {2012}, abstract = {Denudation processes and sediment transfer are investigated in a high-elevation, low-relief environment (eastern Altiplano, Bolivia) using Be-10, Al-26, and in situ C-14 analysis in fluvial sediments. Concentrations of the long-lived nuclides Be-10 and Al-26 yield consistently low catchment-wide denudation rates of similar to 3-29 mm ky(-1) (integrating over 21-194 ky), which reflect the low geomorphic gradients and the discontinuity of fluvial transport along the eastern Altiplano margin. No significant correlation is recorded between denudation rates of individual catchments and morphological basin parameters (slope, area, elevation). This is attributed to the overall little variability in morphology. The agreement between the denudation rates and published modern sediment discharge data suggests steady landscape evolution of the eastern Altiplano from the latest Pleistocene until today. While Be-10 and Al-26 provide long-term estimates on sediment production, in situ cosmogenic C-14 is used to trace short-term sediment storage. In situ C-14 concentrations are comparatively low indicating that C-14 decayed during alluvial storage over at least the past similar to 11-20 ky. We assume storage at shallow depth (2 m) and consider the influence of soil-mantled hillslopes on the in situ C-14 concentration. Our results illustrate the importance of sediment storage even over short distances and demonstrate the potential of in situ C-14 to study sediment routing and transfer times within drainage systems. However, this study also demonstrates that the long-lived Be-10 and Al-26 nuclides can provide adequate estimates on long-term denudation rates even if sediment transport is not fast but interrupted by several thousands of years of storage.}, language = {en} } @article{SchluneggerNortonZeilinger2011, author = {Schlunegger, Fritz and Norton, Kevin P. and Zeilinger, Gerold}, title = {Climatic forcing on channel profiles in the eastern cordillera of the Coroico Region, Bolivia}, series = {The journal of geology}, volume = {119}, journal = {The journal of geology}, number = {1}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0022-1376}, doi = {10.1086/657407}, pages = {97 -- 107}, year = {2011}, abstract = {Orographic precipitation has a large impact on channel morphology and rock uplift via a positive feedback to erosion. We show that in the Eastern Cordillera of Bolivia, channel concavities reach their highest values where annual precipitation increases in the downstream direction, exceeding 3000 mm. The steepest channels are upstream of this zone of high concavity, where precipitation rates are <1000 mm yr(-1). Channels exhibit graded forms both upstream and downstream of this transient reach. We conclude that the prolonged effect of orographic erosion and related tectonic uplift is the preservation of channels with extreme concavities in the Eastern Cordillera.}, language = {en} } @article{GaoZeilingerXuetal.2016, author = {Gao, Mingxing and Zeilinger, Gerold and Xu, Xiwei and Tan, Xibin and Wang, Qingliang and Hao, Ming}, title = {Active tectonics evaluation from geomorphic indices for the central and the southern Longmenshan range on the Eastern Tibetan Plateau, China}, series = {Tectonics}, volume = {35}, journal = {Tectonics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2015TC004080}, pages = {1812 -- 1826}, year = {2016}, abstract = {We applied the geomorphic indices (hypsometry and stream length gradient) to evaluate the differential uplift of the central and southern Longmenshan, a mountain range characterized by rapid erosion, strong tectonic uplift, and devastating seismic hazards. The results of the geomorphic analysis indicate that the Beichuan-Yingxiu fault and the Shuangshi-Dachuan fault act as major tectonic boundaries separating areas experiencing rapid uplift from slow uplift. The results of the geomorphic analysis also suggest that the Beichuan-Yingxiu fault is the most active fault with the largest relative uplift rates compared to the rest of the faults in the Longmenshan fault system. We compared reflected relative uplift rates based on the hypsometry and stream length gradient indices with geological/geodetic absolute rates. Along-strike and across-strike variations in the hypsometry and stream length gradient correlate with the spatial patterns derived from the apatite fission track exhumation rates, the leveling-derived uplift rate, and coseismic vertical displacements during the 2008 Wenchuan earthquake. These data defined multiple fault relationships in a complex thrust zone and provided geomorphic evidence to evaluate the potential seismic hazards of the southern Longmenshan range.}, language = {en} } @article{PhilipsWalzBergneretal.2015, author = {Philips, Andrea and Walz, Ariane and Bergner, Andreas G. N. and Gr{\"a}ff, Thomas and Heistermann, Maik and Kienzler, Sarah and Korup, Oliver and Lipp, Torsten and Schwanghart, Wolfgang and Zeilinger, Gerold}, title = {Immersive 3D geovisualization in higher education}, series = {Journal of geography in higher education}, volume = {39}, journal = {Journal of geography in higher education}, number = {3}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0309-8265}, doi = {10.1080/03098265.2015.1066314}, pages = {437 -- 449}, year = {2015}, abstract = {In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students reveal benefits, such as better orientation in the study area, higher interactivity with the data, improved discourse among students and enhanced motivation through immersive 3D geovisualization. This suggests that immersive 3D visualization can effectively be used in higher education and that 3D CAVE settings enhance interactive learning between students.}, language = {en} } @inproceedings{ZeilingerMuttiStreckeretal.2006, author = {Zeilinger, Gerold and Mutti, Maria and Strecker, Manfred and Rehak, Katrin and Bookhagen, Bodo and Schwab, Marco}, title = {Integration of digital elevation models and satellite images to investigate geological processes.}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7063}, year = {2006}, abstract = {In order to better understand the geological boundary conditions for ongoing or past surface processes geologists face two important questions: 1) How can we gain additional knowledge about geological processes by analyzing digital elevation models (DEM) and satellite images and 2) Do these efforts present a viable approach for more efficient research. Here, we will present case studies at a variety of scales and levels of resolution to illustrate how we can substantially complement and enhance classical geological approaches with remote sensing techniques. Commonly, satellite and DEM based studies are being used in a first step of assessing areas of geologic interest. While in the past the analysis of satellite imagery (e.g. Landsat TM) and aerial photographs was carried out to characterize the regional geologic characteristics, particularly structure and lithology, geologists have increasingly ventured into a process-oriented approach. This entails assessing structures and geomorphic features with a concept that includes active tectonics or tectonic activity on time scales relevant to humans. In addition, these efforts involve analyzing and quantifying the processes acting at the surface by integrating different remote sensing and topographic data (e.g. SRTM-DEM, SSM/I, GPS, Landsat 7 ETM, Aster, Ikonos…). A combined structural and geomorphic study in the hyperarid Atacama desert demonstrates the use of satellite and digital elevation data for assessing geological structures formed by long-term (millions of years) feedback mechanisms between erosion and crustal bending (Zeilinger et al., 2005). The medium-term change of landscapes during hundred thousands to millions years in a more humid setting is shown in an example from southern Chile. Based on an analysis of rivers/watersheds combined with landscapes parameterization by using digital elevation models, the geomorphic evolution and change in drainage pattern in the coastal Cordillera can be quantified and put into the context of seismotectonic segmentation of a tectonically active region. This has far-reaching implications for earthquake rupture scenarios and hazard mitigation (K. Rehak, see poster on IMAF Workshop). Two examples illustrate short-term processes on decadal, centennial and millennial time scales: One study uses orogen scale precipitation gradients derived from remotely sensed passive microwave data (Bookhagen et al., 2005a). They demonstrate how debris flows were triggered as a response of slopes to abnormally strong rainfall in the interior parts of the Himalaya during intensified monsoons. The area of the orogen that receives high amounts of precipitation during intensified monsoons also constitutes numerous landslide deposits of up to 1km3 volume that were generated during intensified monsoon phase at about 27 and 9 ka (Bookhagen et al., 2005b). Another project in the Swiss Alps compared sets of aerial photographs recorded in different years. By calculating high resolution surfaces the mass transport in a landslide could be reconstructed (M. Schwab, Universit{\"a}t Bern). All these examples, although representing only a short and limited selection of projects using remote sense data in geology, have as a common approach the goal to quantify geological processes. With increasing data resolution and new sensors future projects will even enable us to recognize more patterns and / or structures indicative of geological processes in tectonically active areas. This is crucial for the analysis of natural hazards like earthquakes, tsunamis and landslides, as well as those hazards that are related to climatic variability. The integration of remotely sensed data at different spatial and temporal scales with field observations becomes increasingly important. Many of presently highly populated places and increasingly utilized regions are subject to significant environmental pressure and often constitute areas of concentrated economic value. Combined remote sensing and ground-truthing in these regions is particularly important as geologic, seismicity and hydrologic data may be limited here due to the recency of infrastructural development. Monitoring ongoing processes and evaluating the remotely sensed data in terms of recurrence of events will greatly enhance our ability to assess and mitigate natural hazards.
Dokument 1: Foliensatz | Dokument 2: Abstract
Interdisziplin{\"a}res Zentrum f{\"u}r Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006}, language = {en} }