@misc{TomovPenaRoqueetal.2016, author = {Tomov, Petar and Pena, Rodrigo F. O. and Roque, Antonio C. and Zaks, Michael A.}, title = {Mechanisms of self-sustained oscillatory states in hierarchical modular networks with mixtures of electrophysiological cell types}, series = {Frontiers in computational neuroscience}, journal = {Frontiers in computational neuroscience}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407724}, pages = {17}, year = {2016}, abstract = {In a network with a mixture of different electrophysiological types of neurons linked by excitatory and inhibitory connections, temporal evolution leads through repeated epochs of intensive global activity separated by intervals with low activity level. This behavior mimics "up" and "down" states, experimentally observed in cortical tissues in absence of external stimuli. We interpret global dynamical features in terms of individual dynamics of the neurons. In particular, we observe that the crucial role both in interruption and in resumption of global activity is played by distributions of the membrane recovery variable within the network. We also demonstrate that the behavior of neurons is more influenced by their presynaptic environment in the network than by their formal types, assigned in accordance with their response to constant current.}, language = {en} } @misc{ZaksPikovskij2017, author = {Zaks, Michael A. and Pikovskij, Arkadij}, title = {Chimeras and complex cluster states in arrays of spin-torque oscillators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402180}, pages = {10}, year = {2017}, abstract = {We consider synchronization properties of arrays of spin-torque nano-oscillators coupled via an RC load. We show that while the fully synchronized state of identical oscillators may be locally stable in some parameter range, this synchrony is not globally attracting. Instead, regimes of different levels of compositional complexity are observed. These include chimera states (a part of the array forms a cluster while other units are desynchronized), clustered chimeras (several clusters plus desynchronized oscillators), cluster state (all oscillators form several clusters), and partial synchronization (no clusters but a nonvanishing mean field). Dynamically, these states are also complex, demonstrating irregular and close to quasiperiodic modulation. Remarkably, when heterogeneity of spin-torque oscillators is taken into account, dynamical complexity even increases: close to the onset of a macroscopic mean field, the dynamics of this field is rather irregular.}, language = {en} }