@article{SobhkhizMiandehiYamazakiArrasetal.2022, author = {Sobhkhiz-Miandehi, Sahar and Yamazaki, Yosuke and Arras, Christina and Miyoshi, Yasunobu and Shinagawa, Hiroyuki}, title = {Comparison of the tidal signatures in sporadic E and vertical ion convergence rate, using FORMOSAT-3/COSMIC radio occultation observations and GAIA model}, series = {Earth, planets and space : EPS}, volume = {74}, journal = {Earth, planets and space : EPS}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1880-5981}, doi = {10.1186/s40623-022-01637-y}, pages = {13}, year = {2022}, abstract = {Sporadic E or Es is a transient phenomenon where thin layers of enhanced electron density appear in the ionospheric E region (90-120 km altitude). The neutral wind shear caused by atmospheric tides can lead ions to converge vertically at E-region heights and form the Es layer. This research aims to determine the role of atmospheric solar and lunar tides in Es occurrence. For this purpose, radio occultation data of FORMOSAT-3/COSMIC have been used, which provide complete global coverage of Es events. Moreover, GAIA model simulations have been employed to evaluate the vertical ion convergence induced by solar tides. The results show both migrating and non-migrating solar tidal signatures and the semidiurnal migrating lunar tidal signature mainly in low and mid-latitude Es occurrence. The seasonal variation of the migrating solar tidal components of Es is in good agreement with those in the vertical ion convergence derived from GAIA at higher altitudes. Furthermore, some non-migrating components of solar tides, including semidiurnal westward wavenumbers 1 and 3 and diurnal eastward wavenumbers 2 and 3, also significantly affect the Es occurrence rate.}, language = {en} } @article{MatzkaStolleYamazakietal.2021, author = {Matzka, J{\"u}rgen and Stolle, Claudia and Yamazaki, Yosuke and Bronkalla, Oliver and Morschhauser, Achim}, title = {The geomagnetic Kp index and derived indices of geomagnetic activity}, series = {Space weather : the international journal of research and applications}, volume = {19}, journal = {Space weather : the international journal of research and applications}, number = {5}, publisher = {Wiley}, address = {New York}, issn = {1542-7390}, doi = {10.1029/2020SW002641}, pages = {21}, year = {2021}, abstract = {The geomagnetic Kp index is one of the most extensively used indices of geomagnetic activity, both for scientific and operational purposes. This article reviews the properties of the Kp index and provides a reference for users of the Kp index and associated data products as derived and distributed by the GFZ German Research Centre for Geosciences. The near real-time production of the nowcast Kp index is of particular interest for space weather services and here we describe and evaluate its current setup.}, language = {en} } @article{RodriguezZuluagaStolleYamazakietal.2021, author = {Rodr{\´i}guez Zuluaga, Juan and Stolle, Claudia and Yamazaki, Yosuke and Xiong, Chao and England, Scott L.}, title = {A synoptic-scale wavelike structure in the nighttime equatorial ionization anomaly}, series = {Earth and Space Science : ESS}, volume = {8}, journal = {Earth and Space Science : ESS}, number = {2}, publisher = {American Geophysical Union}, address = {Malden, Mass.}, issn = {2333-5084}, doi = {10.1029/2020EA001529}, pages = {10}, year = {2021}, abstract = {Both ground- and satellite-based airglow imaging have significantly contributed to understanding the low-latitude ionosphere, especially the morphology and dynamics of the equatorial ionization anomaly (EIA). The NASA Global-scale Observations of the Limb and Disk (GOLD) mission focuses on far-ultraviolet airglow images from a geostationary orbit at 47.5 degrees W. This region is of particular interest at low magnetic latitudes because of the high magnetic declination (i.e., about -20 degrees) and proximity of the South Atlantic magnetic anomaly. In this study, we characterize an exciting feature of the nighttime EIA using GOLD observations from October 5, 2018 to June 30, 2020. It consists of a wavelike structure of a few thousand kilometers seen as poleward and equatorward displacements of the EIA-crests. Initial analyses show that the synoptic-scale structure is symmetric about the dip equator and appears nearly stationary with time over the night. In quasi-dipole coordinates, maxima poleward displacements of the EIA-crests are seen at about +/- 12 degrees latitude and around 20 and 60 degrees longitude (i.e., in geographic longitude at the dip equator, about 53 degrees W and 14 degrees W). The wavelike structure presents typical zonal wavelengths of about 6.7 x 10(3) km and 3.3 x 10(3) km. The structure's occurrence and wavelength are highly variable on a day-to-day basis with no apparent dependence on geomagnetic activity. In addition, a cluster or quasi-periodic wave train of equatorial plasma depletions (EPDs) is often detected within the synoptic-scale structure. We further outline the difference in observing these EPDs from FUV images and in situ measurements during a GOLD and Swarm mission conjunction.}, language = {en} } @article{ParkStolleYamazakietal.2020, author = {Park, Jaeheung and Stolle, Claudia and Yamazaki, Yosuke and Rauberg, Jan and Michaelis, Ingo and Olsen, Nils}, title = {Diagnosing low-/mid-latitude ionospheric currents using platform magnetometers}, series = {Earth, planets and space}, volume = {72}, journal = {Earth, planets and space}, number = {1}, publisher = {Springer}, address = {New York}, issn = {1343-8832}, doi = {10.1186/s40623-020-01274-3}, pages = {18}, year = {2020}, abstract = {Electric currents flowing in the terrestrial ionosphere have conventionally been diagnosed by low-earth-orbit (LEO) satellites equipped with science-grade magnetometers and long booms on magnetically clean satellites. In recent years, there are a variety of endeavors to incorporate platform magnetometers, which are initially designed for navigation purposes, to study ionospheric currents. Because of the suboptimal resolution and significant noise of the platform magnetometers, however, most of the studies were confined to high-latitude auroral regions, where magnetic field deflections from ionospheric currents easily exceed 100 nT. This study aims to demonstrate the possibility of diagnosing weak low-/mid-latitude ionospheric currents based on platform magnetometers. We use navigation magnetometer data from two satellites, CryoSat-2 and the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO), both of which have been intensively calibrated based on housekeeping data and a high-precision geomagnetic field model. Analyses based on 8 years of CryoSat-2 data as well as similar to 1.5 years of GRACE-FO data reproduce well-known climatology of inter-hemispheric field-aligned currents (IHFACs), as reported by previous satellite missions dedicated to precise magnetic observations. Also, our results show that C-shaped structures appearing in noontime IHFAC distributions conform to the shape of the South Atlantic Anomaly. The F-region dynamo currents are only partially identified in the platform magnetometer data, possibly because the currents are weaker than IHFACs in general and depend significantly on altitude and solar activity. Still, this study evidences noontime F-region dynamo currents at the highest altitude (717 km) ever reported. We expect that further data accumulation from continuously operating missions may reveal the dynamo currents more clearly during the next solar maximum.}, language = {en} } @article{SoaresYamazakiCnossenetal.2020, author = {Soares, Gabriel Brando and Yamazaki, Yosuke and Cnossen, Ingrid and Matzka, J{\"u}rgen and Pinheiro, Katia J. and Morschhauser, Achim and Alken, Patrick and Stolle, Claudia}, title = {Evolution of the geomagnetic daily variation at Tatuoca, Brazil, From 1957 to 2019}, series = {Journal of geophysical research : Space physics}, volume = {125}, journal = {Journal of geophysical research : Space physics}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2020JA028109}, pages = {20}, year = {2020}, abstract = {The magnetic equator in the Brazilian region has moved over 1,100 km northward since 1957, passing the geomagnetic observatory Tatuoca (TTB), in northern Brazil, around 2013. We recovered and processed TTB hourly mean values of the geomagnetic field horizontal (H) component from 1957 until 2019, allowing the investigation of long-term changes in the daily variation due to the influence of secular variation, solar activity, season, and lunar phase. The H day-to-day variability and the occurrence of the counter electrojet at TTB were also investigated. Until the 1990s, ionospheric solar quiet currents dominated the quiet-time daily variation at TTB. After 2000, the magnitude of the daily variation became appreciably greater due to the equatorial electrojet (EEJ) contribution. The H seasonal and day-to-day variability increased as the magnetic equator approached, but their amplitudes normalized to the average daily variation remained at similar levels. Meanwhile, the amplitude of the lunar variation, normalized in the same way, increased from 5\% to 12\%. Within the EEJ region, the occurrence rate of the morning counter electrojet (MCEJ) increased with proximity to the magnetic equator, while the afternoon counter electrojet (ACEJ) did not. EEJ currents derived from CHAMP and Swarm satellite data revealed that the MCEJ rate varies with magnetic latitude within the EEJ region while the ACEJ rate is largely constant. Simulations with the Thermosphere-Ionosphere-Electrodynamics General Circulation Model based on different geomagnetic main field configurations suggest that long-term changes in the geomagnetic daily variation at TTB can be attributed to the main field secular variation.}, language = {en} } @misc{YamazakiWendtMiyoshietal.2020, author = {Yamazaki, Yosuke and Wendt, Vivien and Miyoshi, Y. and Stolle, Claudia and Siddiqui, Tarique Adnan and Kervalishvili, Guram N. and Laštovička, J. and Kozubek, M. and Ward, W. and Themens, D. R. and Kristoffersen, S. and Alken, Patrick}, title = {September 2019 Antarctic sudden stratospheric warming}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51581}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515814}, pages = {14}, year = {2020}, abstract = {An exceptionally strong stationary planetary wave with Zonal Wavenumber 1 led to a sudden stratospheric warming (SSW) in the Southern Hemisphere in September 2019. Ionospheric data from European Space Agency's Swarm satellite constellation mission show prominent 6-day variations in the dayside low-latitude region at this time, which can be attributed to forcing from the middle atmosphere by the Rossby normal mode "quasi-6-day wave" (Q6DW). Geopotential height measurements by the Microwave Limb Sounder aboard National Aeronautics and Space Administration's Aura satellite reveal a burst of global Q6DW activity in the mesosphere and lower thermosphere during the SSW, which is one of the strongest in the record. The Q6DW is apparently generated in the polar stratosphere at 30-40 km, where the atmosphere is unstable due to strong vertical wind shear connected with planetary wave breaking. These results suggest that an Antarctic SSW can lead to ionospheric variability through wave forcing from the middle atmosphere. Plain Language Summary: A sudden stratospheric warming (SSW) is an extreme wintertime polar meteorological phenomenon occurring mostly over the Arctic region. Studies have shown that Arctic SSW can influence the entire atmosphere. In September 2019, a rare SSW event occurred in the Antarctic region, providing an opportunity to investigate its broader impact on the whole atmosphere. We present observations from the middle atmosphere and ionosphere during this event, noting unusually strong wave activity throughout this region. Our results suggest that an Antarctic SSW can have a significant impact on the whole atmosphere system similar to those due to Arctic events.}, language = {en} } @article{YamazakiWendtMiyoshietal.2020, author = {Yamazaki, Yosuke and Wendt, Vivien and Miyoshi, Y. and Stolle, Claudia and Siddiqui, Tarique Adnan and Kervalishvili, Guram N. and Laštovička, J. and Kozubek, M. and Ward, W. and Themens, D. R. and Kristoffersen, S. and Alken, Patrick}, title = {September 2019 Antarctic sudden stratospheric warming}, series = {Geophysical Research Letters}, volume = {47}, journal = {Geophysical Research Letters}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0094-8276}, doi = {10.1029/2019GL086577}, pages = {1 -- 12}, year = {2020}, abstract = {An exceptionally strong stationary planetary wave with Zonal Wavenumber 1 led to a sudden stratospheric warming (SSW) in the Southern Hemisphere in September 2019. Ionospheric data from European Space Agency's Swarm satellite constellation mission show prominent 6-day variations in the dayside low-latitude region at this time, which can be attributed to forcing from the middle atmosphere by the Rossby normal mode "quasi-6-day wave" (Q6DW). Geopotential height measurements by the Microwave Limb Sounder aboard National Aeronautics and Space Administration's Aura satellite reveal a burst of global Q6DW activity in the mesosphere and lower thermosphere during the SSW, which is one of the strongest in the record. The Q6DW is apparently generated in the polar stratosphere at 30-40 km, where the atmosphere is unstable due to strong vertical wind shear connected with planetary wave breaking. These results suggest that an Antarctic SSW can lead to ionospheric variability through wave forcing from the middle atmosphere. Plain Language Summary: A sudden stratospheric warming (SSW) is an extreme wintertime polar meteorological phenomenon occurring mostly over the Arctic region. Studies have shown that Arctic SSW can influence the entire atmosphere. In September 2019, a rare SSW event occurred in the Antarctic region, providing an opportunity to investigate its broader impact on the whole atmosphere. We present observations from the middle atmosphere and ionosphere during this event, noting unusually strong wave activity throughout this region. Our results suggest that an Antarctic SSW can have a significant impact on the whole atmosphere system similar to those due to Arctic events.}, language = {en} } @article{SoaresYamazakiMatzkaetal.2019, author = {Soares, Gabriel and Yamazaki, Yosuke and Matzka, J{\"u}rgen and Pinheiro, Katia and Stolle, Claudia and Alken, Patrick and Yoshikawa, Akimasa and Uozumi, Teiji and Fujimoto, Akiko and Kulkarni, Atul}, title = {Longitudinal variability of the equatorial counter electrojet during the solar cycle 24}, series = {Studia geophysica et geodaetica}, volume = {63}, journal = {Studia geophysica et geodaetica}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0039-3169}, doi = {10.1007/s11200-018-0286-0}, pages = {304 -- 319}, year = {2019}, abstract = {Ground and space-based geomagnetic data were used in the investigation of the longitudinal, seasonal and lunar phase dependence of the equatorial counter electrojet (CEJ) occurrence in the Peruvian, Brazilian, African, Indian and Philippine sectors during geomagnetically quiet days from the solar cycle 24 (2008 to 2018). We found that CEJ events occur more frequently during the morning (MCEJ) than in the afternoon (ACEJ). The highest MCEJ and ACEJ occurrence rates were observed for the Brazilian sector. Distinct seasonal dependence was found for each longitudinal sector under investigation. The lunar phase dependence was determined for the first time for the Philippine sector (longitude 125 degrees E), and it was shown to be less pronounced than in the Peruvian, Brazilian and African sectors. We demonstrate that differences in CEJ rates derived from ground-based and satellite data can arise from the longitudinal separation between low-latitude and equatorial stations that are used to determine the signal and its consequent time delay in their sunrise/sunset times at ionospheric heights.}, language = {en} } @article{RodriguezZuluagaStolleYamazakietal.2019, author = {Rodriguez-Zuluaga, Juan and Stolle, Claudia and Yamazaki, Yosuke and L{\"u}hr, H. and Park, J. and Scherliess, L. and Chau, J. L.}, title = {On the balance between plasma and magnetic pressure across equatorial plasma depletions}, series = {Journal of geophysical research : Space physics}, volume = {124}, journal = {Journal of geophysical research : Space physics}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9402}, doi = {10.1029/2019JA026700}, pages = {5936 -- 5944}, year = {2019}, abstract = {In magnetized plasmas such as the ionosphere, electric currents develop in regions of strong density gradients to balance the resulting plasma pressure gradients. These currents, usually known as diamagnetic currents decrease the magnetic pressure where the plasma pressure increases, and vice versa. In the low-latitude ionosphere, equatorial plasma depletions (EPDs) are well known for their steep plasma density gradients and adverse effect on radio wave propagation. In this paper, we use continuous measurements of the magnetic field and electron density from the European Space Agency's Swarm constellation mission to assess the balance between plasma and magnetic pressure across large-scale EPDs. The analysis is based on the magnetic fluctuations related to diamagnetic currents flowing at the edges of EPDs. This study shows that most of the EPDs detected by Swarm present a decrease of the plasma pressure relative to the ambient plasma. However, EPDs with high plasma pressure are also identified mainly in the vicinity of the South Atlantic magnetic anomaly. From the electron density measurements, we deduce that such an increase in plasma pressure within EPDs might be possible by temperatures inside the EPD as high as twice the temperature of the ambient plasma. Due to the distinct location of the high-pressure EPDs, we suggest that a possible heating mechanism might be due to precipitation of particle from the radiation belts. This finding corresponds to the first observational evidence of plasma pressure enhancements in regions of depleted plasma density in the ionosphere.}, language = {en} } @article{SoaresYamazakiMatzkaetal.2018, author = {Soares, Gabriel and Yamazaki, Yosuke and Matzka, J{\"u}rgen and Pinheiro, Katia and Morschhauser, Achim and Stolle, Claudia and Alken, Patrick}, title = {Equatorial counter electrojet longitudinal and seasonal variablity in the American sector}, series = {Journal of geophysical research : Space physics}, volume = {123}, journal = {Journal of geophysical research : Space physics}, number = {11}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2018JA025968}, pages = {9906 -- 9920}, year = {2018}, abstract = {The equatorial electrojet occasionally reverses during morning and afternoon hours, leading to periods of westward current in the ionospheric E region that are known as counter electrojet (CEJ) events. We present the first analysis of CEJ climatology and CEJ dependence on solar flux and lunar phase for the Brazilian sector, based on an extensive ground-based data set for the years 2008 to 2017 from the geomagnetic observatory Tatuoca (1.2 degrees S, 48.5 degrees W), and we compare it to the results found for Huancayo (12.0 degrees S, 75.3 degrees W) observatory in the Peruvian sector. We found a predominance of morning CEJ events for both sectors. The afternoon CEJ occurrence rate in the Brazilian sector is twice as high as in the Peruvian sector. The afternoon CEJ occurrence rate strongly depends on season, with maximum rates occurring during the northern-hemisphere summer for the Brazilian sector and during the northern-hemisphere winter for the Peruvian sector. Significant discrepancies between the two sectors are also found for morning CEJ rates during the northern-hemisphere summer. These longitudinal differences are in agreement with a CEJ climatology derived from contemporary Swarm satellite data and can be attributed in part to the well-known longitudinal wave-4 structure in the background equatorial electrojet strength that results from nonmigrating solar tides and stationary planetary waves. Simulations with the Thermosphere-Ionosphere-Electrodynamics General Circulation Model show that the remaining longitudinal variability in CEJ during northern summer can be explained by the effect of migrating tides in the presence of the varying geomagnetic field in the South Atlantic Anomaly.}, language = {en} }