@article{SimonsLewinsohnBluethgenetal.2017, author = {Simons, Nadja K. and Lewinsohn, Thomas and Bluethgen, Nico and Buscot, Francois and Boch, Steffen and Daniel, Rolf and Gossner, Martin M. and Jung, Kirsten and Kaiser, Kristin and M{\"u}ller, J{\"o}rg and Prati, Daniel and Renner, Swen C. and Socher, Stephanie A. and Sonnemann, Ilja and Weiner, Christiane N. and Werner, Michael and Wubet, Tesfaye and Wurst, Susanne and Weisser, Wolfgang W.}, title = {Contrasting effects of grassland management modes on species-abundance distributions of multiple groups}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {237}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2016.12.022}, pages = {143 -- 153}, year = {2017}, abstract = {Intensive land use is a major cause of biodiversity loss, but most studies comparing the response of multiple taxa rely on simple diversity measures while analyses of other community attributes are only recently gaining attention. Species-abundance distributions (SADs) are a community attribute that can be used to study changes in the overall abundance structure of species groups, and whether these changes are driven by abundant or rare species. We evaluated the effect of grassland management intensity for three land-use modes (fertilization, mowing, grazing) and their combination on species richness and SADs for three belowground (arbuscular mycorrhizal fungi, prokaryotes and insect larvae) and seven aboveground groups (vascular plants, bryophytes and lichens; arthropod herbivores; arthropod pollinators; bats and birds). Three descriptors of SADs were evaluated: general shape (abundance decay rate), proportion of rare species (rarity) and proportional abundance of the commonest species (dominance). Across groups, taxonomic richness was largely unaffected by land-use intensity and only decreased with increasing mowing intensity. Of the three SAD descriptors, abundance decay rate became steeper with increasing combined land-use intensity across groups. This reflected a decrease in rarity among plants, herbivores and vertebrates. Effects of fertilization on the three descriptors were similar to the combined land-use intensity effects. Mowing intensity only affected the SAD descriptors of insect larvae and vertebrates, while grazing intensity produced a range of effects on different descriptors in distinct groups. Overall, belowground groups had more even abundance distribtitions than aboveground groups. Strong differences among aboveground groups and between above- and belowground groups indicate that no single taxonomic group can serve as an indicator for effects in other groups. In the past, the use of SADs has been hampered by concerns over theoretical models underlying specific forms of SADs. Our study shows that SAD descriptors that are not connected to a particular model are suitable to assess the effect of land use on community structure.}, language = {en} } @article{SonnemannPfestorfJeltschetal.2015, author = {Sonnemann, Ilja and Pfestorf, Hans and Jeltsch, Florian and Wurst, Susanne}, title = {Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {10}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0141148}, pages = {14}, year = {2015}, abstract = {Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43\%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive-and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity.}, language = {en} } @misc{SonnemannPfestorfJeltschetal.2015, author = {Sonnemann, Ilja and Pfestorf, Hans and Jeltsch, Florian and Wurst, Susanne}, title = {Community- weighted mean plant traits predict small scale distribution of insect root herbivore abundance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {494}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408161}, pages = {14}, year = {2015}, abstract = {Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43\%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive-and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity.}, language = {en} } @article{PfestorfKoernerSonnemannetal.2016, author = {Pfestorf, Hans and K{\"o}rner, Katrin and Sonnemann, Ilja and Wurst, Susanne and Jeltsch, Florian}, title = {Coupling experimental data with individual-based modelling reveals differential effects of root herbivory on grassland plant co-existence along a resource gradient}, series = {Journal of vegetation science}, volume = {27}, journal = {Journal of vegetation science}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1100-9233}, doi = {10.1111/jvs.12357}, pages = {269 -- 282}, year = {2016}, abstract = {QuestionThe empirical evidence of root herbivory effects on plant community composition and co-existence is contradictory. This originates from difficulties connected to below-ground research and confinement of experimental studies to a small range of environmental conditions. Here we suggest coupling experimental data with an individual-based model to overcome the limitations inherent in either approach. To demonstrate this, we investigated the consequences of root herbivory, as experimentally observed on individual plants, on plant competition and co-existence in a population and community context under different root herbivory intensities (RHI), fluctuating and constant root herbivore activity and grazing along a resource gradient. LocationBerlin, Germany, glasshouse; Potsdam, Germany, high performance cluster computer. MethodsThe well-established community model IBC-Grass was adapted to allow for a flexible species parameterization and to include annual species. Experimentally observed root herbivory effects on performance of eight common grassland plant species were incorporated into the model by altering plant growth rates. We then determined root herbivore effects on plant populations, competitive hierarchy and consequences for co-existence and community diversity. ResultsRoot herbivory reduced individual biomass, but temporal fluctuation allowed for compensation of herbivore effects. Reducing resource availability strongly shifted competitive hierarchies, with, however, more similar hierarchies along the gradient under root herbivory, pointing to reduced ecological species differences. Consequently, negative effects on co-existence and diversity prevailed, with the exception of a few positive effects on co-existence of selected species pairs. Temporal fluctuation alleviated but did not remove negative root herbivore effects, despite of the stronger influence of intra- compared to interspecific competition. Grazing in general augmented co-existence. Most interestingly, grazing interacted with RHI and resource availability by promoting positive effects of root herbivory. ConclusionsThrough integrating experimental data on the scale of individual plants with a simulation model we verified that root herbivory could affect plant competition with consequences for species co-existence. Our approach demonstrates the benefit that accrues when empirical and modelling approaches are brought more closely together, and that gathering data on distinct processes and under specific conditions, combined with appropriate models, can be used to answer challenging research questions in a more general way.}, language = {en} } @article{GossnerLewinsohnKahletal.2016, author = {Gossner, Martin M. and Lewinsohn, Thomas M. and Kahl, Tiemo and Grassein, Fabrice and Boch, Steffen and Prati, Daniel and Birkhofer, Klaus and Renner, Swen C. and Sikorski, Johannes and Wubet, Tesfaye and Arndt, Hartmut and Baumgartner, Vanessa and Blaser, Stefan and Bl{\"u}thgen, Nico and B{\"o}rschig, Carmen and Buscot, Francois and Diek{\"o}tter, Tim and Jorge, Leonardo Re and Jung, Kirsten and Keyel, Alexander C. and Klein, Alexandra-Maria and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and M{\"u}ller, J{\"o}rg and Overmann, J{\"o}rg and Pasalic, Esther and Penone, Caterina and Perovic, David J. and Purschke, Oliver and Schall, Peter and Socher, Stephanie A. and Sonnemann, Ilja and Tschapka, Marco and Tscharntke, Teja and T{\"u}rke, Manfred and Venter, Paul Christiaan and Weiner, Christiane N. and Werner, Michael and Wolters, Volkmar and Wurst, Susanne and Westphal, Catrin and Fischer, Markus and Weisser, Wolfgang W. and Allan, Eric}, title = {Land-use intensification causes multitrophic homogenization of grassland communities}, series = {Nature : the international weekly journal of science}, volume = {540}, journal = {Nature : the international weekly journal of science}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature20575}, pages = {266 -- +}, year = {2016}, abstract = {Land-use intensification is a major driver of biodiversity loss(1,2). Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in beta-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (alpha)-diversity(1,3) and neglected biodiversity loss at larger spatial scales. Studies addressing beta-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above-and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in alpha-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on beta-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in beta-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local alpha-diversity in aboveground groups, whereas the alpha-diversity increased in belowground groups. Correlations between the alpha-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.}, language = {en} } @article{SoliveresvanderPlasManningetal.2016, author = {Soliveres, Santiago and van der Plas, Fons and Manning, Peter and Prati, Daniel and Gossner, Martin M. and Renner, Swen C. and Alt, Fabian and Arndt, Hartmut and Baumgartner, Vanessa and Binkenstein, Julia and Birkhofer, Klaus and Blaser, Stefan and Bl{\"u}thgen, Nico and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and Buscot, Francois and Diek{\"o}tter, Tim and Heinze, Johannes and H{\"o}lzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Kleinebecker, Till and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and M{\"u}ller, J{\"o}rg and Oelmann, Yvonne and Overmann, J{\"o}rg and Pasalic, Esther and Rillig, Matthias C. and Schaefer, H. Martin and Schloter, Michael and Schmitt, Barbara and Sch{\"o}ning, Ingo and Schrumpf, Marion and Sikorski, Johannes and Socher, Stephanie A. and Solly, Emily F. and Sonnemann, Ilja and Sorkau, Elisabeth and Steckel, Juliane and Steffan-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and T{\"u}rke, Manfred and Venter, Paul C. and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Wolters, Volkmar and Wubet, Tesfaye and Wurst, Susanne and Fischer, Markus and Allan, Eric}, title = {Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality}, series = {Nature : the international weekly journal of science}, volume = {536}, journal = {Nature : the international weekly journal of science}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature19092}, pages = {456 -- +}, year = {2016}, language = {en} } @article{SoliveresManningPratietal.2016, author = {Soliveres, Santiago and Manning, Peter and Prati, Daniel and Gossner, Martin M. and Alt, Fabian and Arndt, Hartmut and Baumgartner, Vanessa and Binkenstein, Julia and Birkhofer, Klaus and Blaser, Stefan and Bluethgen, Nico and Boch, Steffen and Boehm, Stefan and Boerschig, Carmen and Buscot, Francois and Diekoetter, Tim and Heinze, Johannes and Hoelzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Klein, Alexandra-Maria and Kleinebecker, Till and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and Mueller, Joerg and Oelmann, Yvonne and Overmann, J{\"o}rg and Pasalic, Esther and Renner, Swen C. and Rillig, Matthias C. and Schaefer, H. Martin and Schloter, Michael and Schmitt, Barbara and Schoening, Ingo and Schrumpf, Marion and Sikorski, Johannes and Socher, Stephanie A. and Solly, Emily F. and Sonnemann, Ilja and Sorkau, Elisabeth and Steckel, Juliane and Steffan-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and Tuerke, Manfred and Venter, Paul and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Wolters, Volkmar and Wubet, Tesfaye and Wurst, Susanne and Fischer, Markus and Allan, Eric}, title = {Locally rare species influence grassland ecosystem multifunctionality}, series = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, volume = {371}, journal = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, publisher = {Royal Society}, address = {London}, issn = {0962-8436}, doi = {10.1098/rstb.2015.0269}, pages = {3175 -- 3185}, year = {2016}, abstract = {Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6\% of the species tested. Species specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.}, language = {en} } @article{HilkerSchwachtjeBaieretal.2016, author = {Hilker, Monika and Schwachtje, Jens and Baier, Margarete and Balazadeh, Salma and B{\"a}urle, Isabel and Geiselhardt, Sven and Hincha, Dirk K. and Kunze, Reinhard and Mueller-Roeber, Bernd and Rillig, Matthias G. and Rolff, Jens and Schm{\"u}lling, Thomas and Steppuhn, Anke and van Dongen, Joost and Whitcomb, Sarah J. and Wurst, Susanne and Zuther, Ellen and Kopka, Joachim}, title = {Priming and memory of stress responses in organisms lacking a nervous system}, series = {Biological reviews}, volume = {91}, journal = {Biological reviews}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1464-7931}, doi = {10.1111/brv.12215}, pages = {1118 -- 1133}, year = {2016}, language = {en} } @article{CosmeFrankenMewisetal.2014, author = {Cosme, Marco and Franken, Philipp and Mewis, Inga and Baldermann, Susanne and Wurst, Susanne}, title = {Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera}, series = {Mycorrhiza}, volume = {24}, journal = {Mycorrhiza}, number = {7}, publisher = {Springer}, address = {New York}, issn = {0940-6360}, doi = {10.1007/s00572-014-0574-7}, pages = {565 -- 570}, year = {2014}, abstract = {Moringa is a mycorrhizal crop cultivated in the tropics and subtropics and appreciated for its nutritive and health-promoting value. As well as improving plant mineral nutrition, arbuscular mycorrhizal fungi (AMF) can affect plant synthesis of compounds bioactive against chronic diseases in humans. Rhizophagus intraradices and Funneliformis mosseae were used in a full factorial experiment to investigate the impact of AMF on the accumulation of glucosinolates, flavonoids, phenolic acids, carotenoids, and mineral elements in moringa leaves. Levels of glucosinolates were enhanced, flavonoids and phenolic acids were not affected, levels of carotenoids (including provitamin A) were species-specifically reduced, and mineral elements were affected differently, with only Cu and Zn being increased by the AMF. This study presents novel results on AMF effects on glucosinolates in leaves and supports conclusions that the impacts of these fungi on microelement concentrations in edible plants are species dependent. The nonspecific positive effects on glucosinolates and the species-specific negative effects on carotenoids encourage research on other AMF species to achieve general benefits on bioactive compounds in moringa.}, language = {en} }