@misc{WozniakSicard2018, author = {Wozniak, Natalia Joanna and Sicard, Adrien}, title = {Evolvability of flower geometry}, series = {Seminars in cell \& developmental biology}, volume = {79}, journal = {Seminars in cell \& developmental biology}, publisher = {Elsevier}, address = {London}, issn = {1084-9521}, doi = {10.1016/j.semcdb.2017.09.028}, pages = {3 -- 15}, year = {2018}, abstract = {Flowers represent a key innovation during plant evolution. Driven by reproductive optimization, evolution of flower morphology has been central in boosting species diversification. In most cases, this has happened through specialized interactions with animal pollinators and subsequent reduction of gene flow between specialized morphs. While radiation has led to an enormous variability in flower forms and sizes, recurrent evolutionary patterns can be observed. Here, we discuss the targets of selection involved in major trends of pollinator-driven flower evolution. We review recent findings on their adaptive values, developmental grounds and genetic bases, in an attempt to better understand the repeated nature of pollinator-driven flower evolution. This analysis highlights how structural innovation can provide flexibility in phenotypic evolution, adaptation and speciation. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @phdthesis{Wozniak2019, author = {Wozniak, Natalia Joanna}, title = {Convergent evolution of the selfing syndrome in the genus Capsella}, school = {Universit{\"a}t Potsdam}, pages = {229}, year = {2019}, language = {en} } @article{SicardKappelLeeetal.2016, author = {Sicard, Adrien and Kappel, Christian and Lee, Young Wha and Wozniak, Natalia Joanna and Marona, Cindy and Stinchcombe, John R. and Wright, Stephen I. and Lenhard, Michael}, title = {Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in Capsella}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {113}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1613394113}, pages = {13911 -- 13916}, year = {2016}, abstract = {Mating system shifts recurrently drive specific changes in organ dimensions. The shift in mating system from out-breeding to selfing is one of the most frequent evolutionary transitions in flowering plants and is often associated with an organ-specific reduction in flower size. However, the evolutionary paths along which polygenic traits, such as size, evolve are poorly understood. In particular, it is unclear how natural selection can specifically modulate the size of one organ despite the pleiotropic action of most known growth regulators. Here, we demonstrate that allelic variation in the intron of a general growth regulator contributed to the specific reduction of petal size after the transition to selfing in the genus Capsella. Variation within this intron affects an organ-specific enhancer that regulates the level of STERILE APETALA (SAP) protein in the developing petals. The resulting decrease in SAP activity leads to a shortening of the cell proliferation period and reduced number of petal cells. The absence of private polymorphisms at the causal region in the selfing species suggests that the small-petal allele was captured from standing genetic variation in the ancestral out-crossing population. Petal-size variation in the current out-crossing population indicates that several small-effect mutations have contributed to reduce petal-size. These data demonstrate how tissue-specific regulatory elements in pleiotropic genes contribute to organ-specific evolution. In addition, they provide a plausible evolutionary explanation for the rapid evolution of flower size after the out-breeding-to-selfing transition based on additive effects of segregating alleles.}, language = {en} } @misc{JantzenWozniakKappeletal.2019, author = {Jantzen, Friederike and Wozniak, Natalia Joanna and Kappel, Christian and Sicard, Adrien and Lenhard, Michael}, title = {A high‑throughput amplicon‑based method for estimating outcrossing rates}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {745}, issn = {1866-8372}, doi = {10.25932/publishup-43565}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435657}, pages = {14}, year = {2019}, abstract = {Background: The outcrossing rate is a key determinant of the population-genetic structure of species and their long-term evolutionary trajectories. However, determining the outcrossing rate using current methods based on PCRgenotyping individual offspring of focal plants for multiple polymorphic markers is laborious and time-consuming. Results: We have developed an amplicon-based, high-throughput enabled method for estimating the outcrossing rate and have applied this to an example of scented versus non-scented Capsella (Shepherd's Purse) genotypes. Our results show that the method is able to robustly capture differences in outcrossing rates. They also highlight potential biases in the estimates resulting from differential haplotype sharing of the focal plants with the pollen-donor population at individual amplicons. Conclusions: This novel method for estimating outcrossing rates will allow determining this key population-genetic parameter with high-throughput across many genotypes in a population, enabling studies into the genetic determinants of successful pollinator attraction and outcrossing.}, language = {en} } @article{JantzenWozniakKappeletal.2019, author = {Jantzen, Friederike and Wozniak, Natalia Joanna and Kappel, Christian and Sicard, Adrien and Lenhard, Michael}, title = {A high‑throughput amplicon‑based method for estimating outcrossing rates}, series = {Plant Methods}, volume = {15}, journal = {Plant Methods}, number = {47}, publisher = {BioMed Central}, address = {London}, issn = {1746-4811}, doi = {10.1186/s13007-019-0433-9}, pages = {14}, year = {2019}, abstract = {Background: The outcrossing rate is a key determinant of the population-genetic structure of species and their long-term evolutionary trajectories. However, determining the outcrossing rate using current methods based on PCRgenotyping individual offspring of focal plants for multiple polymorphic markers is laborious and time-consuming. Results: We have developed an amplicon-based, high-throughput enabled method for estimating the outcrossing rate and have applied this to an example of scented versus non-scented Capsella (Shepherd's Purse) genotypes. Our results show that the method is able to robustly capture differences in outcrossing rates. They also highlight potential biases in the estimates resulting from differential haplotype sharing of the focal plants with the pollen-donor population at individual amplicons. Conclusions: This novel method for estimating outcrossing rates will allow determining this key population-genetic parameter with high-throughput across many genotypes in a population, enabling studies into the genetic determinants of successful pollinator attraction and outcrossing.}, language = {en} }