@article{KofodWirgesPaajanenetal.2007, author = {Kofod, Guggi and Wirges, Werner and Paajanen, Mika and Bauer, Siegfried}, title = {Energy minimization for self-organized structure formation and actuation}, issn = {0003-6951}, doi = {10.1063/1.2695785}, year = {2007}, abstract = {An approach for creating complex structures with embedded actuation in planar manufacturing steps is presented. Self-organization and energy minimization are central to this approach, illustrated with a model based on minimization of the hyperelastic free energy strain function of a stretched elastomer and the bending elastic energy of a plastic frame. A tulip-shaped gripper structure illustrates the technological potential of the approach. Advantages are simplicity of manufacture, complexity of final structures, and the ease with which any electroactive material can be exploited as means of actuation. (c) 2007 American Institute of Physics.}, language = {en} } @article{WegenerWirgesTiersch2006, author = {Wegener, Michael and Wirges, Werner and Tiersch, Brigitte}, title = {Porous polytetrafluoroethylene (PTFE) electret films : porosity and time dependent charging behaviour of the free surface}, doi = {10.1007/s10934-006-9015-0}, year = {2006}, abstract = {Electrically charged porous polytetrafluoroethylene (PTFE) films are often discussed as active layers for electromechanical transducers. Here, the electric charging behavior of open-porous PTFE films with different porosities is investigated. Optimized electric charging of porous PTFE films is determined by variation of charging parameters such as electric fields and charging times. Maximum surface potentials are depending on the porosity of the PTFE films. Suitable charging leads to high surface potentials observed on non-stretched or slightly stretched porous PTFE films. Further increase of charging fields yields decreasing values of the surface potential accompanied with an increase of conductivity.}, language = {en} } @article{WangFruebingWirgesetal.2010, author = {Wang, Feipeng and Fr{\"u}bing, Peter and Wirges, Werner and Gerhard, Reimund and Wegener, Michael}, title = {Enhanced Polarization in Melt-quenched and Stretched Poly(vinylidene Fluoride-Hexafluoropropylene) Films}, issn = {1070-9878}, doi = {10.1109/TDEI.2010.5539679}, year = {2010}, abstract = {beta-phase poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) copolymer films were prepared by uniaxially stretching solution-cast or melt-quenched samples. Different preparation routes lead to different amounts of the crystalline alpha and beta phases in the films, as detected by means of Fourier-transform infrared spectroscopy and X-ray diffractometry. The beta phase is significantly enhanced in melt-quenched and stretched films in comparison to solution-cast and stretched films. This is particularly true for copolymer samples with higher HFP content. The beta- phase enhancement is also observed in ferroelectric-hysteresis experiments where a rather high polarization of 58 mC/ m(2) was found on melt-quenched and stretched samples after poling at electric fields of 140 MV/m. After poling at 160 MV/m, one of these samples exhibited a piezoelectric d(33) coefficient as high as 21 pC/N. An electric-field-induced partial transition from the alpha to the beta phase was also observed on the melt-quenched and stretched samples. This effect leads to a further increase in the applications-relevant dipole polarization. Uniaxially stretched ferroelectric- polymer films are highly anisotropic. Dielectric resonance spectroscopy reveals a strong increase of the transverse piezoelectric d(32) coefficient and a strong decrease of the transverse elastic modulus c(32) upon heating from 20 to 50 degrees C.}, language = {en} } @article{WirgesRaabeQiu2012, author = {Wirges, Werner and Raabe, Sebastian and Qiu, Xunlin}, title = {Dielectric elastomer and ferroelectret films combined in a single device how do they reinforce each other?}, series = {Applied physics : A, Materials science \& processing}, volume = {107}, journal = {Applied physics : A, Materials science \& processing}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-012-6833-6}, pages = {583 -- 588}, year = {2012}, abstract = {Dielectric elastomers (DE) are soft polymer materials exhibiting large deformations under electrostatic stress. When a prestretched elastomer is stuck to a flat plastic frame, a complex structure that can be used as an actuator (DEA) is formed due to self-organization and energy minimization. Here, such a DEA was equipped with a ferroelectret film. Ferroelectrets are internally charged polymer foams or void-containing polymer-film systems combining large piezoelectricity with mechanical flexibility and elastic compliance. In their dielectric spectra, ferroelectrets show piezoelectric resonances that can be used to analyze their electromechanical properties. The antiresonance frequencies ( ) of ferroelectret films not only are directly related to their geometric parameters, but also are sensitive to the boundary conditions during measurement. In this paper, a fluoroethylenepropylene (FEP) ferroelectret film with tubular void channels was glued to a plastic frame prior to the formation of self-organized minimum-energy DEA structure. The dielectric resonance spectrum (DRS) of the ferroelectret film was measured in-situ during the actuation of the DEA under applied voltage. It is found that the antiresonance frequency is a monotropic function of the bending angle of the actuator. Therefore, the actuation of DEAs can be used to modulate the of ferroelectrets, while the can also be taken for in-situ diagnosis and for precise control of the actuation of the DEA. Combination of DEAs and ferroelectrets brings a number of possibilities for application.}, language = {en} } @article{GerhardWegenerKuenstleretal.2000, author = {Gerhard, Reimund and Wegener, Michael and K{\"u}nstler, Wolfgang and Wirges, Werner and G{\"o}rne, Thomas and Urayama, D. and Neher, Dieter}, title = {Inverse piezoelectricity of porous PTFE films with bipolar space charge}, year = {2000}, language = {en} } @article{MellingerWegenerWirgesetal.2006, author = {Mellinger, Axel and Wegener, Michael and Wirges, Werner and Mallepally, Rajendar Reddy and Gerhard, Reimund}, title = {Thermal and temporal stability of ferroelectret films made from cellular polypropylene/air composites}, year = {2006}, abstract = {Ferroelectrets are thin films of polymer foams, exhibiting piezoelectric properties after electrical charging. Ferroelectret foams usually consist of a cellular polymer structure filled with air. Polymer-air composites are elastically soft due to their high air content as well as due to the size and shape of the polymer walls. Their elastically soft composite structure is one essential key for the working principle of ferroelectrets, besides the permanent trapping of electric charges inside the polymer voids. The elastic properties allow large deformations of the electrically charged voids. However, the composite structure can also possibly limit the stability and consequently the range of applications because of, e. g., penetration of gas and liquids accompanied by discharge phenomena or because of a mechanical pre-load which may be required during the application. Here, we discuss various stability aspects related to the piezoelectric properties of polypropylene ferroelectrets. Near and below room temperature, the piezoelectric effect and the stability of the trapped charges are practically independent from humidity during long-time storage in a humid atmosphere or water, or from operating conditions, such as continuous mechanical excitation. Thermal treatment of cellular polypropylene above -10 degrees C leads to a softening of the voided structure which is apparent from the decreasing values of the elastic modulus. This decrease results in an increase of the piezoelectric activity. Heating above 60 degrees C, however, leads to a decrease in piezoelectricity}, language = {en} } @article{QiuMellingerWirgesetal.2007, author = {Qiu, Xunlin and Mellinger, Axel and Wirges, Werner and Gerhard, Reimund}, title = {Spectroscopic study of dielectric barrier discharges in cellular polypropylene ferroelectrets}, doi = {10.1063/1.2786597}, year = {2007}, abstract = {The transient light emission from the dielectric barrier discharges (DBDs) in cellular polypropylene ferroelectrets subjected to high electric poling fields was spectroscopically measured. The spectrum shows strong emission from the second positive system of molecular nitrogen, N-2(C (3)Pi(u))-> N-2(B (3)Pi(g)), and the first negative system of N-2(+), N-2(+)(B (2)Sigma(+)(u))-> N-2(+)(X (2)Sigma(+)(g)), consistent with a DBD in air. When a dc voltage is applied stepwise to the ferroelectret film, light emission starts above a threshold, coinciding with the threshold voltage in obtaining piezoelectricity. From selected vibronic band strength ratios, the electric field in the discharge was determined and found to agree with Townsend breakdown.}, language = {en} } @article{MellingerFloresSuarezSinghetal.2006, author = {Mellinger, Axel and Flores Su{\´a}rez, Rosaura and Singh, Rajeev and Wegener, Michael and Wirges, Werner and Lang, Sidney B. and Gerhard, Reimund}, title = {High-resolution space-charge and polarization tomography with thermal pulses}, isbn = {3-8007-2939-3}, year = {2006}, abstract = {Die Arbeit wurde am 13.03.2006 mit dem "BEST PAPER AWARD" des deutschen IEEE Instrumentation and Measurement (I\&M) Chapter ausgezeichnet.}, language = {en} } @article{BassoAltafimAltafimetal.2007, author = {Basso, Heitor Cury and Altafim, Ruy Alberto Pisani and Altafim, Ruy Alberto Pisani and Mellinger, Axel and Fang, Peng and Wirges, Werner and Gerhard, Reimund}, title = {Three-layer ferroelectrets from perforated Teflon-PTFE films fused between two homogeneous Teflon-FEP films}, isbn = {978-1-4244-1482-6}, year = {2007}, language = {en} } @article{WegenerWirgesPaajanenetal.2007, author = {Wegener, Michael and Wirges, Werner and Paajanen, Mika and Gerhard, Reimund}, title = {Charging behaviour and thermal stability of porous and non-porous polytetrafluoroethylene (PTFE) electrets}, isbn = {978-1-4244-1482-6}, year = {2007}, language = {en} } @article{QiuMellingerWirgesetal.2007, author = {Qiu, Xunlin and Mellinger, Axel and Wirges, Werner and Gerhard, Reimund}, title = {Dielectric barrier discharges during the generation of ferroelectrets : optical spectroscopy for process monitoring}, isbn = {978-1-4244-1482-6}, year = {2007}, language = {en} } @article{QiuMellingerWegeneretal.2007, author = {Qiu, Xunlin and Mellinger, Axel and Wegener, Michael and Wirges, Werner and Gerhard, Reimund}, title = {Barrier discharges in cellular polypropylene ferroelectrets : how do they influence the electromechanical properties?}, year = {2007}, language = {en} } @article{MellingerFloresSuarezSinghetal.2007, author = {Mellinger, Axel and Flores Su{\´a}rez, Rosaura and Singh, Rajeev and Wegener, Michael and Wirges, Werner and Gerhard, Reimund}, title = {Zerst{\"o}rungsfreie Tomographie von Raumladungs- und Polarisationsverteilungen mittles W{\"a}rmepulsen}, issn = {0171-8096}, doi = {10.1524/teme.2007.74.9.437}, year = {2007}, abstract = {Non-destructive, three-dimensional imaging of space-charge and polarization distributions in electret materials has been implemented by means of laser-induced thermal pulses. In pyroelectric films of poled poly(vinylidene fluoride), images of up to 45 x 45 pixels with a depth resolution of less than 0.5 mu m and a lateral resolution of 40 mu m were recorded, the latter being limited by fast thermal diffusion in the absorbing metallic front electrode. Initial applications include the analysis of polarization distributions in corona-poled piezoelectric sensor cables and the detection of patterned space-charge distributions in polytetrafluoroethylene films.}, language = {de} } @article{WegenerBergweilerZscherpeletal.2006, author = {Wegener, Michael and Bergweiler, Steffen and Zscherpel, Detlef and Wirges, Werner and Gerhard, Reimund}, title = {Detection of elliptical oscillations and monopole breathing of organ-pipe bodies with piezoelectric polymer sensors}, year = {2006}, abstract = {In this paper, a measuring technique is presented for the detection of radial oscillations of tube walls excited by changes in internal air pressure. On organ pipes, the oscillations were investigated by means of piezoelectric polymer films slightly tensioned around the pipe bodies. Employing sensors with patterned electrodes, the well-known elliptical oscillation of the cross section as well as an additional monopole breathing of the organ-pipe body were detected. For the monopole breathing, a close relationship between the pressure distribution of the air-column resonances inside the pipe and the circumference variations along the pipe was observed}, language = {en} } @article{MellingerWegenerWirgesetal.2006, author = {Mellinger, Axel and Wegener, Michael and Wirges, Werner and Mallepally, Rajendar Reddy and Gerhard, Reimund}, title = {Thermal and temporal stability of ferroelectret films made from cellular polypropylene/air composites}, year = {2006}, language = {en} } @article{QiuWegenerWirgesetal.2005, author = {Qiu, X. L. and Wegener, Michael and Wirges, Werner and Zhang, X. Q. and Hillenbrand, J. and Xia, Zhongfu and Gerhard, Reimund and Sessler, G. M.}, title = {Penetration of sulfur hexafluoride into cellular polypropylene films and its effect on the electric charging and electromechanical response of ferroelectrets}, issn = {0022-3727}, year = {2005}, abstract = {Cellular polypropylene (PP) films were treated with sulfur hexafluoride (SF6) gas in order to study the SF6 penetration behaviour and optimize the electric charging conditions. There were differences in the penetration of SF6 for different cellular PP materials, depending on the microscopic properties, which manifest themselves in the voided structure as well as in the mechanical stiffnesses of the cellular films. The penetration of SF6 after long-term pressure treatment is confirmed in strongly inflated cellular PP films with a low mechanical stiffness of about 1 MPa. No SF6 penetration occurs for slightly inflated cellular PP films with smaller void sizes and higher mechanical stiffnesses of around 5.8 MPa. The observed thickness variations, the higher charging fields during corona charging because of SF6 penetration and the SF6 environment, as well as the resulting electromechanical properties are discussed}, language = {en} } @article{MellingerSinghWegeneretal.2005, author = {Mellinger, Axel and Singh, Rajeev and Wegener, Michael and Wirges, Werner and Gerhard, Reimund and Lang, Sidney B.}, title = {Three-dimensional mapping of polarization profiles with thermal pulses}, issn = {0003-6951}, year = {2005}, abstract = {High-resolution, large-area three-dimensional mapping of polarization profiles in electret polymers was carried out by means of a fast thermal pulse technique with a focused laser beam. A lateral resolution of 38 mu m and a near- surface depth resolution of less than 0.5 mu m was achieved. At larger depths, fast thermal diffusion in the metal electrode rather than the laser spot size becomes the limiting factor for the lateral resolution. (c) 2005 American Institute of Physics}, language = {en} } @article{WegenerWirgesGerhard2005, author = {Wegener, Michael and Wirges, Werner and Gerhard, Reimund}, title = {Piezoelectric polyethylene terephthalate (PETP) foams : specifically designed and prepared ferroelectret films}, year = {2005}, language = {en} } @article{BauerGogoneaBauerWirgesetal.2004, author = {Bauer-Gogonea, Simona and Bauer, Siegfried and Wirges, Werner and Gerhard, Reimund}, title = {Dielectric investigation of photo-induced chromophore degradation in nonlinear optical side-chain polymer electrets}, year = {2004}, abstract = {Organic materials with non-centrosymmetric chromophores are known to be susceptible to a number of photochemical processes, including reversible isomerization reactions as well as irreversible photo-oxidation or photo- reduction reactions. Reversible isomerization is the basis for a variety of applications, such as photo-induced poling, optical data storage and optical grating formation. The irreversible processes that involve the destruction of the chromophores have been found useful for the fabrication of optical waveguides, but they also limit the life times of polymeric photonic devices. In this paper, it is demonstrated that dielectric measurements allow for an in-depth investigation of non-reversible chromophore degradation processes in a typical side-chain polymer. The time- and temperature-dependent dielectric function of the polymer at 1 kHz enables us to follow the chromophore-degradation kinetics and to monitor the bleaching depth as a function of time at room and elevated temperatures}, language = {en} } @article{WegenerBergweilerWirgesetal.2005, author = {Wegener, Michael and Bergweiler, Steffen and Wirges, Werner and Pucher, Andreas and Tuncer, Enis and Gerhard, Reimund}, title = {Piezoelectric two-layer stacks of cellular polypropylene ferroelectrets : transducer response at audio and ultrasound frequencies}, issn = {0885-3010}, year = {2005}, abstract = {Piezoelectric cellular polypropylene films, so-called ferroelectrets, are assembled in a stack with two active transducer layers. The stack is characterized with respect to its linear and quadratic response in a frequency range from 1 kHz to 80 kHz. A relatively smooth frequency response in the sound-pressure level is found for the individual layers as well as for both layers driven in phase. The piezoelectric response of the two-layer stack is twice the response of an individual layer over a rather broad frequency range. Furthermore, the influence of the preparation conditions on the resonance frequency and the effect of the quadratic distortion on the radiated sound are investigated both for the individual transducer films in the stack and for the stack system as a whole}, language = {en} }