@article{KofodWirgesPaajanenetal.2007, author = {Kofod, Guggi and Wirges, Werner and Paajanen, Mika and Bauer, Siegfried}, title = {Energy minimization for self-organized structure formation and actuation}, issn = {0003-6951}, doi = {10.1063/1.2695785}, year = {2007}, abstract = {An approach for creating complex structures with embedded actuation in planar manufacturing steps is presented. Self-organization and energy minimization are central to this approach, illustrated with a model based on minimization of the hyperelastic free energy strain function of a stretched elastomer and the bending elastic energy of a plastic frame. A tulip-shaped gripper structure illustrates the technological potential of the approach. Advantages are simplicity of manufacture, complexity of final structures, and the ease with which any electroactive material can be exploited as means of actuation. (c) 2007 American Institute of Physics.}, language = {en} } @article{WegenerWirgesTiersch2006, author = {Wegener, Michael and Wirges, Werner and Tiersch, Brigitte}, title = {Porous polytetrafluoroethylene (PTFE) electret films : porosity and time dependent charging behaviour of the free surface}, doi = {10.1007/s10934-006-9015-0}, year = {2006}, abstract = {Electrically charged porous polytetrafluoroethylene (PTFE) films are often discussed as active layers for electromechanical transducers. Here, the electric charging behavior of open-porous PTFE films with different porosities is investigated. Optimized electric charging of porous PTFE films is determined by variation of charging parameters such as electric fields and charging times. Maximum surface potentials are depending on the porosity of the PTFE films. Suitable charging leads to high surface potentials observed on non-stretched or slightly stretched porous PTFE films. Further increase of charging fields yields decreasing values of the surface potential accompanied with an increase of conductivity.}, language = {en} } @article{WangFruebingWirgesetal.2010, author = {Wang, Feipeng and Fr{\"u}bing, Peter and Wirges, Werner and Gerhard, Reimund and Wegener, Michael}, title = {Enhanced Polarization in Melt-quenched and Stretched Poly(vinylidene Fluoride-Hexafluoropropylene) Films}, issn = {1070-9878}, doi = {10.1109/TDEI.2010.5539679}, year = {2010}, abstract = {beta-phase poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) copolymer films were prepared by uniaxially stretching solution-cast or melt-quenched samples. Different preparation routes lead to different amounts of the crystalline alpha and beta phases in the films, as detected by means of Fourier-transform infrared spectroscopy and X-ray diffractometry. The beta phase is significantly enhanced in melt-quenched and stretched films in comparison to solution-cast and stretched films. This is particularly true for copolymer samples with higher HFP content. The beta- phase enhancement is also observed in ferroelectric-hysteresis experiments where a rather high polarization of 58 mC/ m(2) was found on melt-quenched and stretched samples after poling at electric fields of 140 MV/m. After poling at 160 MV/m, one of these samples exhibited a piezoelectric d(33) coefficient as high as 21 pC/N. An electric-field-induced partial transition from the alpha to the beta phase was also observed on the melt-quenched and stretched samples. This effect leads to a further increase in the applications-relevant dipole polarization. Uniaxially stretched ferroelectric- polymer films are highly anisotropic. Dielectric resonance spectroscopy reveals a strong increase of the transverse piezoelectric d(32) coefficient and a strong decrease of the transverse elastic modulus c(32) upon heating from 20 to 50 degrees C.}, language = {en} } @article{WirgesRaabeQiu2012, author = {Wirges, Werner and Raabe, Sebastian and Qiu, Xunlin}, title = {Dielectric elastomer and ferroelectret films combined in a single device how do they reinforce each other?}, series = {Applied physics : A, Materials science \& processing}, volume = {107}, journal = {Applied physics : A, Materials science \& processing}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-012-6833-6}, pages = {583 -- 588}, year = {2012}, abstract = {Dielectric elastomers (DE) are soft polymer materials exhibiting large deformations under electrostatic stress. When a prestretched elastomer is stuck to a flat plastic frame, a complex structure that can be used as an actuator (DEA) is formed due to self-organization and energy minimization. Here, such a DEA was equipped with a ferroelectret film. Ferroelectrets are internally charged polymer foams or void-containing polymer-film systems combining large piezoelectricity with mechanical flexibility and elastic compliance. In their dielectric spectra, ferroelectrets show piezoelectric resonances that can be used to analyze their electromechanical properties. The antiresonance frequencies ( ) of ferroelectret films not only are directly related to their geometric parameters, but also are sensitive to the boundary conditions during measurement. In this paper, a fluoroethylenepropylene (FEP) ferroelectret film with tubular void channels was glued to a plastic frame prior to the formation of self-organized minimum-energy DEA structure. The dielectric resonance spectrum (DRS) of the ferroelectret film was measured in-situ during the actuation of the DEA under applied voltage. It is found that the antiresonance frequency is a monotropic function of the bending angle of the actuator. Therefore, the actuation of DEAs can be used to modulate the of ferroelectrets, while the can also be taken for in-situ diagnosis and for precise control of the actuation of the DEA. Combination of DEAs and ferroelectrets brings a number of possibilities for application.}, language = {en} } @article{GerhardWegenerKuenstleretal.2000, author = {Gerhard, Reimund and Wegener, Michael and K{\"u}nstler, Wolfgang and Wirges, Werner and G{\"o}rne, Thomas and Urayama, D. and Neher, Dieter}, title = {Inverse piezoelectricity of porous PTFE films with bipolar space charge}, year = {2000}, language = {en} } @article{MellingerWegenerWirgesetal.2006, author = {Mellinger, Axel and Wegener, Michael and Wirges, Werner and Mallepally, Rajendar Reddy and Gerhard, Reimund}, title = {Thermal and temporal stability of ferroelectret films made from cellular polypropylene/air composites}, year = {2006}, abstract = {Ferroelectrets are thin films of polymer foams, exhibiting piezoelectric properties after electrical charging. Ferroelectret foams usually consist of a cellular polymer structure filled with air. Polymer-air composites are elastically soft due to their high air content as well as due to the size and shape of the polymer walls. Their elastically soft composite structure is one essential key for the working principle of ferroelectrets, besides the permanent trapping of electric charges inside the polymer voids. The elastic properties allow large deformations of the electrically charged voids. However, the composite structure can also possibly limit the stability and consequently the range of applications because of, e. g., penetration of gas and liquids accompanied by discharge phenomena or because of a mechanical pre-load which may be required during the application. Here, we discuss various stability aspects related to the piezoelectric properties of polypropylene ferroelectrets. Near and below room temperature, the piezoelectric effect and the stability of the trapped charges are practically independent from humidity during long-time storage in a humid atmosphere or water, or from operating conditions, such as continuous mechanical excitation. Thermal treatment of cellular polypropylene above -10 degrees C leads to a softening of the voided structure which is apparent from the decreasing values of the elastic modulus. This decrease results in an increase of the piezoelectric activity. Heating above 60 degrees C, however, leads to a decrease in piezoelectricity}, language = {en} } @article{QiuMellingerWirgesetal.2007, author = {Qiu, Xunlin and Mellinger, Axel and Wirges, Werner and Gerhard, Reimund}, title = {Spectroscopic study of dielectric barrier discharges in cellular polypropylene ferroelectrets}, doi = {10.1063/1.2786597}, year = {2007}, abstract = {The transient light emission from the dielectric barrier discharges (DBDs) in cellular polypropylene ferroelectrets subjected to high electric poling fields was spectroscopically measured. The spectrum shows strong emission from the second positive system of molecular nitrogen, N-2(C (3)Pi(u))-> N-2(B (3)Pi(g)), and the first negative system of N-2(+), N-2(+)(B (2)Sigma(+)(u))-> N-2(+)(X (2)Sigma(+)(g)), consistent with a DBD in air. When a dc voltage is applied stepwise to the ferroelectret film, light emission starts above a threshold, coinciding with the threshold voltage in obtaining piezoelectricity. From selected vibronic band strength ratios, the electric field in the discharge was determined and found to agree with Townsend breakdown.}, language = {en} } @article{MellingerFloresSuarezSinghetal.2006, author = {Mellinger, Axel and Flores Su{\´a}rez, Rosaura and Singh, Rajeev and Wegener, Michael and Wirges, Werner and Lang, Sidney B. and Gerhard, Reimund}, title = {High-resolution space-charge and polarization tomography with thermal pulses}, isbn = {3-8007-2939-3}, year = {2006}, abstract = {Die Arbeit wurde am 13.03.2006 mit dem "BEST PAPER AWARD" des deutschen IEEE Instrumentation and Measurement (I\&M) Chapter ausgezeichnet.}, language = {en} } @article{BassoAltafimAltafimetal.2007, author = {Basso, Heitor Cury and Altafim, Ruy Alberto Pisani and Altafim, Ruy Alberto Pisani and Mellinger, Axel and Fang, Peng and Wirges, Werner and Gerhard, Reimund}, title = {Three-layer ferroelectrets from perforated Teflon-PTFE films fused between two homogeneous Teflon-FEP films}, isbn = {978-1-4244-1482-6}, year = {2007}, language = {en} } @article{WegenerWirgesPaajanenetal.2007, author = {Wegener, Michael and Wirges, Werner and Paajanen, Mika and Gerhard, Reimund}, title = {Charging behaviour and thermal stability of porous and non-porous polytetrafluoroethylene (PTFE) electrets}, isbn = {978-1-4244-1482-6}, year = {2007}, language = {en} } @article{QiuMellingerWirgesetal.2007, author = {Qiu, Xunlin and Mellinger, Axel and Wirges, Werner and Gerhard, Reimund}, title = {Dielectric barrier discharges during the generation of ferroelectrets : optical spectroscopy for process monitoring}, isbn = {978-1-4244-1482-6}, year = {2007}, language = {en} } @article{QiuMellingerWegeneretal.2007, author = {Qiu, Xunlin and Mellinger, Axel and Wegener, Michael and Wirges, Werner and Gerhard, Reimund}, title = {Barrier discharges in cellular polypropylene ferroelectrets : how do they influence the electromechanical properties?}, year = {2007}, language = {en} } @article{MellingerFloresSuarezSinghetal.2007, author = {Mellinger, Axel and Flores Su{\´a}rez, Rosaura and Singh, Rajeev and Wegener, Michael and Wirges, Werner and Gerhard, Reimund}, title = {Zerst{\"o}rungsfreie Tomographie von Raumladungs- und Polarisationsverteilungen mittles W{\"a}rmepulsen}, issn = {0171-8096}, doi = {10.1524/teme.2007.74.9.437}, year = {2007}, abstract = {Non-destructive, three-dimensional imaging of space-charge and polarization distributions in electret materials has been implemented by means of laser-induced thermal pulses. In pyroelectric films of poled poly(vinylidene fluoride), images of up to 45 x 45 pixels with a depth resolution of less than 0.5 mu m and a lateral resolution of 40 mu m were recorded, the latter being limited by fast thermal diffusion in the absorbing metallic front electrode. Initial applications include the analysis of polarization distributions in corona-poled piezoelectric sensor cables and the detection of patterned space-charge distributions in polytetrafluoroethylene films.}, language = {de} } @article{WegenerBergweilerZscherpeletal.2006, author = {Wegener, Michael and Bergweiler, Steffen and Zscherpel, Detlef and Wirges, Werner and Gerhard, Reimund}, title = {Detection of elliptical oscillations and monopole breathing of organ-pipe bodies with piezoelectric polymer sensors}, year = {2006}, abstract = {In this paper, a measuring technique is presented for the detection of radial oscillations of tube walls excited by changes in internal air pressure. On organ pipes, the oscillations were investigated by means of piezoelectric polymer films slightly tensioned around the pipe bodies. Employing sensors with patterned electrodes, the well-known elliptical oscillation of the cross section as well as an additional monopole breathing of the organ-pipe body were detected. For the monopole breathing, a close relationship between the pressure distribution of the air-column resonances inside the pipe and the circumference variations along the pipe was observed}, language = {en} } @article{MellingerWegenerWirgesetal.2006, author = {Mellinger, Axel and Wegener, Michael and Wirges, Werner and Mallepally, Rajendar Reddy and Gerhard, Reimund}, title = {Thermal and temporal stability of ferroelectret films made from cellular polypropylene/air composites}, year = {2006}, language = {en} } @article{QiuWegenerWirgesetal.2005, author = {Qiu, X. L. and Wegener, Michael and Wirges, Werner and Zhang, X. Q. and Hillenbrand, J. and Xia, Zhongfu and Gerhard, Reimund and Sessler, G. M.}, title = {Penetration of sulfur hexafluoride into cellular polypropylene films and its effect on the electric charging and electromechanical response of ferroelectrets}, issn = {0022-3727}, year = {2005}, abstract = {Cellular polypropylene (PP) films were treated with sulfur hexafluoride (SF6) gas in order to study the SF6 penetration behaviour and optimize the electric charging conditions. There were differences in the penetration of SF6 for different cellular PP materials, depending on the microscopic properties, which manifest themselves in the voided structure as well as in the mechanical stiffnesses of the cellular films. The penetration of SF6 after long-term pressure treatment is confirmed in strongly inflated cellular PP films with a low mechanical stiffness of about 1 MPa. No SF6 penetration occurs for slightly inflated cellular PP films with smaller void sizes and higher mechanical stiffnesses of around 5.8 MPa. The observed thickness variations, the higher charging fields during corona charging because of SF6 penetration and the SF6 environment, as well as the resulting electromechanical properties are discussed}, language = {en} } @article{MellingerSinghWegeneretal.2005, author = {Mellinger, Axel and Singh, Rajeev and Wegener, Michael and Wirges, Werner and Gerhard, Reimund and Lang, Sidney B.}, title = {Three-dimensional mapping of polarization profiles with thermal pulses}, issn = {0003-6951}, year = {2005}, abstract = {High-resolution, large-area three-dimensional mapping of polarization profiles in electret polymers was carried out by means of a fast thermal pulse technique with a focused laser beam. A lateral resolution of 38 mu m and a near- surface depth resolution of less than 0.5 mu m was achieved. At larger depths, fast thermal diffusion in the metal electrode rather than the laser spot size becomes the limiting factor for the lateral resolution. (c) 2005 American Institute of Physics}, language = {en} } @article{WegenerWirgesGerhard2005, author = {Wegener, Michael and Wirges, Werner and Gerhard, Reimund}, title = {Piezoelectric polyethylene terephthalate (PETP) foams : specifically designed and prepared ferroelectret films}, year = {2005}, language = {en} } @article{BauerGogoneaBauerWirgesetal.2004, author = {Bauer-Gogonea, Simona and Bauer, Siegfried and Wirges, Werner and Gerhard, Reimund}, title = {Dielectric investigation of photo-induced chromophore degradation in nonlinear optical side-chain polymer electrets}, year = {2004}, abstract = {Organic materials with non-centrosymmetric chromophores are known to be susceptible to a number of photochemical processes, including reversible isomerization reactions as well as irreversible photo-oxidation or photo- reduction reactions. Reversible isomerization is the basis for a variety of applications, such as photo-induced poling, optical data storage and optical grating formation. The irreversible processes that involve the destruction of the chromophores have been found useful for the fabrication of optical waveguides, but they also limit the life times of polymeric photonic devices. In this paper, it is demonstrated that dielectric measurements allow for an in-depth investigation of non-reversible chromophore degradation processes in a typical side-chain polymer. The time- and temperature-dependent dielectric function of the polymer at 1 kHz enables us to follow the chromophore-degradation kinetics and to monitor the bleaching depth as a function of time at room and elevated temperatures}, language = {en} } @article{WegenerBergweilerWirgesetal.2005, author = {Wegener, Michael and Bergweiler, Steffen and Wirges, Werner and Pucher, Andreas and Tuncer, Enis and Gerhard, Reimund}, title = {Piezoelectric two-layer stacks of cellular polypropylene ferroelectrets : transducer response at audio and ultrasound frequencies}, issn = {0885-3010}, year = {2005}, abstract = {Piezoelectric cellular polypropylene films, so-called ferroelectrets, are assembled in a stack with two active transducer layers. The stack is characterized with respect to its linear and quadratic response in a frequency range from 1 kHz to 80 kHz. A relatively smooth frequency response in the sound-pressure level is found for the individual layers as well as for both layers driven in phase. The piezoelectric response of the two-layer stack is twice the response of an individual layer over a rather broad frequency range. Furthermore, the influence of the preparation conditions on the resonance frequency and the effect of the quadratic distortion on the radiated sound are investigated both for the individual transducer films in the stack and for the stack system as a whole}, language = {en} } @article{WegenerBergweilerWirgesetal.2004, author = {Wegener, Michael and Bergweiler, Steffen and Wirges, Werner and Pucher, Andreas and Gerhard, Reimund}, title = {Voided space-charge electrets : piezoelectric transducer materials for electro-acoustic applications}, year = {2004}, language = {en} } @article{WegenerWirgesFohlmeisteretal.2004, author = {Wegener, Michael and Wirges, Werner and Fohlmeister, Jens Bernd and Tiersch, Brigitte and Gerhard, Reimund}, title = {Two-step inflation of cellular polypropylene films: Void-thickness increase and enhanced electromechanical properties}, year = {2004}, abstract = {In cellular, electromechanically active polymer films, the so-called ferroelectrets, the cell size and shape distributions can be varied through a controlled inflation process. Up to now, high-pressure treatments were usually performed at elevated temperatures. There are, however, significant experimental limitations and complications if the pressure and temperature treatments are performed at the same time. Here, we demonstrate the controlled inflation of cellular polypropylene films by means of sepal-ate pressure and temperature treatments. Separate procedures are Much easier to implement. Excellent electromechanical properties were achieved with Such a two-step inflation process. The technique has significant potential for inflating large-area transducer films for electromechanical and electroacoustical applications}, language = {en} } @article{WegenerGerhardWirgesetal.2003, author = {Wegener, Michael and Gerhard, Reimund and Wirges, Werner and Bergner, Andr{\´e} and Bergweiler, Steffen}, title = {Breathing modes of organ-pipe bodies : experimental detection with ring-shaped piezoelectric-polymer sensors}, year = {2003}, language = {en} } @article{WegenerPaajanenWirgesetal.2002, author = {Wegener, Michael and Paajanen, Mika and Wirges, Werner and Gerhard, Reimund}, title = {Corona-induced partial discharges, internal charge separation and electromechanical transducer properties in cellular polymer films}, isbn = {0-7803-7560-2}, year = {2002}, language = {en} } @article{GerhardWegenerWirgesetal.2002, author = {Gerhard, Reimund and Wegener, Michael and Wirges, Werner and Giacometti, J. A. and Altafim, Ruy Alberto Pisani and Santos, Lucas F. and Faria, Roberto M. and Paajanen, Mika}, title = {Electrode polling of cellular polypropylene films with short high-voltage pulses}, isbn = {0-7803-7502-5}, year = {2002}, language = {en} } @article{WegenerWirgesRichteretal.2001, author = {Wegener, Michael and Wirges, Werner and Richter, Kristin and K{\"u}nstler, Wolfgang and Gerhard, Reimund}, title = {Charge stability and piezoelectric properties of porous fluoro-polymer space-charge electrets in layer systems}, year = {2001}, language = {en} } @article{MellingerWegenerWirgesetal.2001, author = {Mellinger, Axel and Wegener, Michael and Wirges, Werner and Gerhard, Reimund}, title = {Thermally stable dynamic piezoelectricity in sandwich films of porous and non-porous amorphous fluoropolymer}, year = {2001}, language = {en} } @article{EllingPinnowDanzetal.2001, author = {Elling, B. and Pinnow, M. and Danz, Rudi and Wegener, Michael and Wirges, werner and Gerhard, Reimund}, title = {Coating of porous polytetrafluoroethylene films with other polymers for electret applications}, isbn = {0-7803-7053-8}, year = {2001}, language = {en} } @article{StrackeBayerZimmermannetal.1999, author = {Stracke, A. and Bayer, A. and Zimmermann, S. and Wendorff, Joachim Heinz and Wirges, Werner and Bauer-Gogonea, Simona and Bauer, Siegfried and Gerhard, Reimund}, title = {Relaxation behaviour of electrically induced polar orientation and of optically induced non-polar orientation in an azo-chromophore side group polymer}, issn = {0022-3727}, year = {1999}, language = {en} } @article{BauerGogoneaChengWirgesetal.1998, author = {Bauer-Gogonea, Simona and Cheng, Z. Y. and Wirges, Werner and Bauer, Siegfried and Gerhard, Reimund and Das-Gupta, D. K.}, title = {Dielectric investigation of thermally-induced chromophore degradation in nonlinear optical polymer electrets}, year = {1998}, language = {en} } @article{DonvalBerkovicYilmazetal.1996, author = {Donval, Ariela and Berkovic, Garry and Yilmaz, S{\"u}kr{\"u} and Bauer-Gogonea, Simona and Brinker, Walter and Wirges, Werner and Bauer, Siegfried and Gerhard, Reimund}, title = {Spatial and thermal analysis of nonlinearity created by asymmetric charge injection}, year = {1996}, language = {en} } @article{DingerYilmazBrinkeretal.1996, author = {Dinger, Claudia and Yilmaz, S{\"u}kr{\"u} and Brinker, Walter and Wirges, Werner and Bauer, Siegfried and Gerhard, Reimund}, title = {Ellipsometry and Michelson interferometry for fixed- and variable- frequency electro-optical measurements on poled polymers}, year = {1996}, language = {en} } @article{BauerGogoneaWirgesBaueretal.1996, author = {Bauer-Gogonea, Simona and Wirges, Werner and Bauer, Siegfried and Gerhard, Reimund and Liang, J. and Zyss, Joseph}, title = {Electrical determination of the degree of cross-linking in a poled nonlinear optical polymer}, year = {1996}, language = {en} } @article{BrinkerYilmazWirgesetal.1995, author = {Brinker, Walter and Yilmaz, S{\"u}kr{\"u} and Wirges, Werner and Bauer, Siegfried and Gerhard, Reimund}, title = {Phase-shift interference microscope for the investigation of dipoleorientation distributions}, year = {1995}, language = {en} } @article{BauerGogoneaBauerWirgesetal.1995, author = {Bauer-Gogonea, Simona and Bauer, Siegfried and Wirges, Werner and Gerhard, Reimund}, title = {Preparation and pyroelectrical investigation of bimorph polymer layers}, year = {1995}, language = {en} } @article{ChinagliaGregorioStefanelloetal.2010, author = {Chinaglia, Dante Luis and Gregorio, Rinaldo and Stefanello, Josiani Cristina and Altafim, Ruy Alberto Pisani and Wirges, Werner and Wang, Feipeng and Gerhard, Reimund}, title = {Influence of the solvent evaporation rate on the crystalline phases of solution-cast poly(vinylidene fluoride) films}, issn = {0021-8995}, doi = {10.1002/App.31488}, year = {2010}, abstract = {The influence of the solvent-evaporation rate on the formation of of. and P crystalline phases in solution-cast poly(vinylidene fluoride) (PVDF) films was systematically investigated. Films were crystallized from PVDF/N,N- dimethylformamide solutions with concentrations of 2.5, 5.0, 10, and 20 wt \% at different temperatures. During crystallization, the solvent evaporation rate was monitored in situ by means of a semianalytic balance. With this system, it was possible to determine the evaporation rate for different concentrations and temperatures of the solution under specific ambient conditions (pressure, temperature, and humidity). Fourier-Transform InfraRed spectroscopy with Attenuated Total Reflectance revealed the P-phase content in the PVDF films and its dependence on previous evaporation rates. Based on the relation between the evaporation rate and the PVDF phase composition, a consistent explanation for the different amounts of P phase observed at the upper and lower sample surfaces is achieved. Furthermore, the role of the sample thickness has also been studied. The experimental results show that not only the temperature but also the evaporation rate have to be controlled to obtain the desired crystalline phases in solution-cast PVDF films.}, language = {en} } @article{AltafimQiuWirgesetal.2009, author = {Altafim, Ruy Alberto Pisani and Qiu, Xunlin and Wirges, Werner and Gerhard, Reimund and Altafim, Ruy Alberto Pisani and Basso, Heitor Cury and Jenninger, Werner and Wagner, Joachim}, title = {Template-based fluoroethylenepropylene piezoelectrets with tubular channels for transducer applications}, issn = {0021-8979}, doi = {10.1063/1.3159039}, year = {2009}, abstract = {We describe the concept, the fabrication, and the most relevant properties of a piezoelectric-polymer system: Two fluoroethylenepropylene (FEP) films with good electret properties are laminated around a specifically designed and prepared polytetrafluoroethylene (PTFE) template at 300 degrees C. After removing the PTFE template, a two-layer FEP film with open tubular channels is obtained. For electric charging, the two-layer FEP system is subjected to a high electric field. The resulting dielectric barrier discharges inside the tubular channels yield a ferroelectret with high piezoelectricity. d(33) coefficients of up to 160 pC/N have already been achieved on the ferroelectret films. After charging at suitable elevated temperatures, the piezoelectricity is stable at temperatures of at least 130 degrees C. Advantages of the transducer films include ease of fabrication at laboratory or industrial scales, a wide range of possible geometrical and processing parameters, straightforward control of the uniformity of the polymer system, flexibility, and versatility of the soft ferroelectrets, and a large potential for device applications e.g., in the areas of biomedicine, communications, production engineering, sensor systems, environmental monitoring, etc.}, language = {en} } @article{FloresSuarezGanesanWirgesetal.2010, author = {Flores Su{\´a}rez, Rosaura and Ganesan, Lakshmi Meena and Wirges, Werner and Gerhard, Reimund and Mellinger, Axel}, title = {Imaging liquid crystals dispersed in a ferroelectric polymer matrix by means of thermal-pulse tomography}, issn = {1070-9878}, doi = {10.1109/TDEI.2010.5539683}, year = {2010}, abstract = {A new arrangement of the optical elements in a Thermal-Pulse-Tomography (TPT) setup allows to scan micrometer structures in composite and heterogeneous samples such as polymer-dispersed liquid crystals (PDLCs). The non-destructive TPT technique allows the determination of three-dimensional profiles of polarization and space charge in dielectrics. The samples under study were 12 mu m thick films of a copolymer of vinylidene fluoride with trifluoroethylene P(VDF- TrFE) (65/35) with embedded liquid-crystal droplets. The poling process was performed in direct contact well above the coercive field of the copolymer. The 3D map obtained from scanning with a 10 mu m wide spot shows elliptically shaped areas with liquid-crystal droplets. Considering the droplets as oblate spheroids, their major axis lies in the x-y plane, while their minor axis in the z direction measures 0.5 mu m or more. This result is in good agreement with scanning electron micrographs. It is believed that the major axis is overestimated due to imaging of liquid-crystal clusters.}, language = {en} } @article{PhamPetreBerquezetal.2009, author = {Pham, Cong Duc and Petre, Anca and Berquez, Laurent and Flores Su{\´a}rez, Rosaura and Mellinger, Axel and Wirges, Werner and Gerhard, Reimund}, title = {3D high-resolution mapping of polarization profiles in thin poly(vinylidenefluoride-trifluoroethylene) (PVDF- TrFE) films using two thermal techniques}, issn = {1070-9878}, doi = {10.1109/TDEI.2009.5128505}, year = {2009}, abstract = {In this paper, two non-destructive thermal methods are used in order to determine, with a high degree of accuracy, three-dimensional polarization distributions in thin films (12 mu m) of poly(vinylidenefluoride- trifluoroethylene) (PVDF-TrFE). The techniques are the frequency-domain Focused Laser Intensity Modulation Method (FLIMM) and time-domain Thermal-Pulse Tomography (TPT). Samples were first metalized with grid-shaped electrode and poled. 3D polarization mapping yielded profiles which reproduce the electrode-grid shape. The polarization is not uniform across the sample thickness. Significant polarization values are found only at depths beyond 0.5 mu m from the sample surface. Both methods provide similar results, TPT method being faster, whereas the FLIMM technique has a better lateral resolution.}, language = {en} } @article{LancaWirgesNeaguetal.2007, author = {Lanca, M. C. and Wirges, Werner and Neagu, Eugen R. and Gerhard, Reimund and Marat-Mendes, Jos{\´e} Narciso}, title = {Influence of humidity on the electrical charging properties of cork agglomerates}, issn = {0022-3093}, doi = {10.1016/j.jnoncrysol.2007.03.037}, year = {2007}, abstract = {Cork is a natural cellular and electrically insulating material which may have the capacity to store electric charges on or in its cell walls. Since natural cork has many voids, it is difficult to obtain uniform samples with the required dimensions. Therefore, a more uniform material, namely commercial cork agglomerate, usually used for floor and wall coverings, is employed in the present study. Since we know from our previous work that the electrical properties of cork are drastically affected by absorbed and adsorbed water, samples were protected by means of different polymer coatings (applied by spin-coating or soaking). Corona charging and isothermal charging and discharging currents were used to study the electrical trapping and detrapping capabilities of the samples. A comparison of the results leads to the conclusion that the most promising method for storing electric charges in this cellular material consists of drying and coating or soaking with a hydrophobic, electrically insulating polymer such as polytetraflouroethylene (Teflon (R)). (c) 2007 Elsevier B.V. All rights reserved.}, language = {en} } @article{FangWangWirgesetal.2011, author = {Fang, Peng and Wang, Feipeng and Wirges, Werner and Gerhard, Reimund and Basso, Heitor Cury}, title = {Three-layer piezoelectrets from fluorinated ethylene-propylene (FEP) copolymer films}, series = {Applied physics : A, Materials science \& processing}, volume = {103}, journal = {Applied physics : A, Materials science \& processing}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-010-6008-2}, pages = {455 -- 461}, year = {2011}, abstract = {A process for preparing three-layer piezoelectrets from fluorinated ethylene-propylene (FEP) copolymer films is introduced. Samples are made from commercial FEP films by means of laser cutting, laser bonding, electrode evaporation, and high-field poling. The observed dielectric-resonance spectra demonstrate the piezoelectricity of the FEP sandwiches. Piezoelectric d (33) coefficients up to a few hundred pC/N are achieved. Charging at elevated temperatures can increase the thermal stability of the piezoelectrets. Isothermal experiments for approximately 15 min demonstrate that samples charged at 140A degrees C keep their piezoelectric activity up to at least 120A degrees C and retain 70\% of their initial d (33) even at 130A degrees C. Acoustical measurements show a relatively flat frequency response in the range between 300 Hz and 20 kHz.}, language = {en} } @article{FangWegenerWirgesetal.2007, author = {Fang, Peng and Wegener, Michael and Wirges, Werner and Gerhard, Reimund and Zirkel, Larissa}, title = {Cellular polyethylene-naphthalate ferroelectrets : foaming in supercritical carbon dioxide, structural and electrical preparation, and resulting piezoelectricity}, issn = {0003-6951}, doi = {10.1063/1.2738365}, year = {2007}, abstract = {Polymer foams with electrically charged cellular voids, the so-called ferroelectrets, are soft piezoelectric transducer materials. Several polymers such as polyethylene terephthalate or cyclo-olefin copolymers are under investigation with respect to their suitability as ferroelectrets. Here, the authors report an additional ferroelectret polymer, cellular polyethylene-naphthalate (PEN), which was prepared from commercial uniform polymer films by means of foaming in supercritical carbon dioxide, inflation, biaxial stretching, electrical charging, and metallization. Piezoelectric d(33) coefficients of up to 140 pC/N demonstrate the suitability of such cellular PEN films for transducer applications. Their piezoelectricity is partially stable at elevated temperatures as high as 100 degrees C.}, language = {en} } @article{RosenhahnFinlayPettitetal.2009, author = {Rosenhahn, Axel and Finlay, John A. and Pettit, Michala E. and Ward, Andy and Wirges, Werner and Gerhard, Reimund and Callow, Maureen E. and Grunze, Michael and Callow, James A.}, title = {Zeta potential of motile spores of the green alga Ulva linza and the influence of electrostatic interactions on spore settlement and adhesion strength}, issn = {1559-4106}, doi = {10.1116/1.3110182}, year = {2009}, abstract = {The zeta potential of the motile spores of the green alga (seaweed) Ulva linza was quantified by video microscopy in combination with optical tweezers and determined to be -19.3{\~n}1.1 mV. The electrostatic component involved in the settlement and adhesion of spores was studied using electret surfaces consisting of PTFE and bearing different net charges. As the surface chemistry remains the same for differently charged surfaces, the experimental results isolate the influence of surface charge and thus electrostatic interactions. Ulva spores were demonstrated to have a reduced tendency to settle on negatively charged surfaces and when they did settle the adhesion strength of settled spores was lower than with neutral or positively charged surfaces. These observations can be ascribed to electrostatic interactions.}, language = {en} } @article{GerhardBauerBauerGogoneaetal.1995, author = {Gerhard, Reimund and Bauer, Siegfried and Bauer-Gogonea, Simona and Brinker, Walter and Dinger, Claudia and Molzow, Wolf-Dietrich and Wirges, Werner and Yilmaz, S{\"u}kr{\"u}}, title = {Electro-optical investigation of the dipole orientation in poled polymers}, year = {1995}, language = {en} } @article{BauerBauerGogoneaYilmazetal.1995, author = {Bauer, Siegfried and Bauer-Gogonea, Simona and Yilmaz, S{\"u}kr{\"u} and Dinger, Claudia and Wirges, Werner and Gerhard, Reimund and Michelotti, F. and Toussaere, E. and Levenson, R. and Liang, J. and Zyss, Joseph}, title = {Pyroelectric, dielectric and electro-optical investigation of crosslinking in Red Acid Magly}, year = {1995}, language = {en} } @article{WirgesPrzyrembelBrinkeretal.1995, author = {Wirges, Werner and Przyrembel, G. and Brinker, Walter and Gerhard, Reimund and Klemberg-Sapieha, J. and Martinu, L. and Poitras, D. and Wertheimer, M. R.}, title = {Metallised viscoelastic control layers for light-valve projection displays}, year = {1995}, language = {en} } @article{BauerGogoneaBauerWirgesetal.1995, author = {Bauer-Gogonea, Simona and Bauer, Siegfried and Wirges, Werner and Gerhard, Reimund and Wintler, H. J.}, title = {Physical aging after photo-induced or thermally assisted poling for enhancing the stability of polymeric dipole glasses}, year = {1995}, language = {en} } @article{BrinkerWirgesMolzowetal.1995, author = {Brinker, Walter and Wirges, Werner and Molzow, Wolf-Dietrich and Gerhard, Reimund and Melcher, R. and Budde, W. and Fiedler, H.}, title = {Active silicon CMOS addressing matrices for light-valve projection displays}, year = {1995}, language = {en} } @article{DonvalBerkovicBauerGogoneaetal.1995, author = {Donval, Ariela and Berkovic, Garry and Bauer-Gogonea, Simona and Wirges, Werner and Bauer, Siegfried and Gerhard, Reimund}, title = {Pyroelectric depth profiling of the optical nonlinearity caused by charge injection}, year = {1995}, language = {en} } @article{BauerBauerGogoneaYilmazetal.1995, author = {Bauer, Siegfried and Bauer-Gogonea, Simona and Yilmaz, S{\"u}kr{\"u} and Wirges, Werner and Gerhard, Reimund}, title = {Pyroelectrical investigation of nonlinear optical polymers with uniform or patterned dipole orientation}, year = {1995}, language = {en} } @article{BauerRenYilmazetal.1995, author = {Bauer, Siegfried and Ren, W. and Yilmaz, S{\"u}kr{\"u} and Wirges, Werner and Gerhard, Reimund}, title = {Relaxation processes in poled nonlinear optical polymers}, year = {1995}, language = {en} } @article{FangQiuWirgesetal.2010, author = {Fang, Peng and Qiu, Xunlin and Wirges, Werner and Gerhard, Reimund and Zirkel, Larissa}, title = {Polyethylene-naphthalate (PEN) ferroelectrets : cellular structure, piezoelectricity and thermal stability}, issn = {1070-9878}, doi = {10.1109/TDEI.2010.5539678}, year = {2010}, abstract = {Cellular polyethylene-naphthalate (PEN) ferroelectrets are useful as soft and flexible electromechanical transducer materials. Improved cellular PEN foams are prepared by means of a "voiding + inflation + stretching" process and investigated with respect to their structure and their applications-relevant properties. It is found that most of the cellular voids have heights below 8 mu m. The polymer walls do not allow sufficient gas exchange between the voids and the ambient atmosphere, when the cellular films are exposed to atmospheric pressures between a millibar and a few bars. As expected for ferroelectrets, a threshold voltage for charging is observed: A reasonable piezoelectric coefficient d(33) is only found when the charging voltage is higher than 4 kV. Furthermore, d(33) increases with charging voltage and reaches saturation at approximately 8 kV. Annealing after charging or charging at elevated temperatures may enhance the thermal stability of the PEN ferroelectrets. The d(33) of properly annealed samples is stable up to the respective annealing temperatures, but the annealing process reduces the piezoelectric activity of charged ferroelectret films to some extent. Samples charged at suitable elevated temperatures show much better thermal stability than those charged at room temperature, but the charging temperature should be limited to values below the material's glass-transition temperature T-g. Furthermore, the relevant elastic modulus c(33) of PEN ferroelectrets may decrease upon thermal treatment.}, language = {en} } @article{SaarimaekiPaajanenSavijaervietal.2006, author = {Saarim{\"a}ki, Eetta and Paajanen, Mika and Savij{\"a}rvi, Ann-Mari and Minkkinen, Hannu and Wegener, Michael and Voronina, Olena and Schulze, Robert and Wirges, Werner and Gerhard, Reimund}, title = {Novel heat durable electromechanical film : processing for electromechanical and electret applications}, year = {2006}, abstract = {New ferroelectrets were developed on the basis of foams from cyclo-olefin polymers and copolymers. The results obtained on the cyclo-olefin polymer foam demonstrate a significant improvement of the service temperature for ferroelectret transducer materials. Suitable compounding and preparation led to cyclo-olefin ferroelectrets with an electromechanical activity of around 15 pC/N, which is thermally stable at least up to 110 degrees C. The properties in sensor and actuator applications are strongly dependent on the processing parameters related to film-making, sensor and actuator preparation, gas content and electric charging. The processing window for the film stretching was very narrow compared to the earlier developed polypropylene ferroelectrets. The film porosity, softness and thus the electromechanical activity are adjusted by gas-diffusion expansion. The activity of the electromechanically operating sensors and actuators was increased by stacking several layers of cellular cyclo-olefin film. For applications such as flat loudspeakers, the foamed films are tuned by tensioning them on a support frame. Correct tensioning was essential also for reducing the distortion levels.}, language = {en} } @article{WirgesWegenerVoroninaetal.2007, author = {Wirges, Werner and Wegener, Michael and Voronina, Olena and Zirkel, Larissa and Gerhard, Reimund}, title = {Optimized preparation of elastically soft, highly piezoelectric, cellular ferroelectrets from nonvoided poly(ethylene terephthalate) films}, doi = {10.1002/adfm.200600162}, year = {2007}, abstract = {Electrically charged cellular polymer films can exhibit very high piezoelectric activity and are therefore more and more often employed in advanced electromechanical and electro-acoustical transducers. In this paper, we report an optimized sequence of steps for preparing such ferroelectrets from commercial nonvoided ploy(ethylene terephthalate) (PETP) films by means of foaming with CO2 biaxial mechanical stretching, controlled void inflation, and bipolar electric charging. The nonvoid PETP films foamed with supercritical CO2 at a suitably high pressure and subsequently annealed for stabilization. The cellular foam structure was further optimized by means of well controlled biaxial stretching in a commercial stretcher and sometimes subsequent inflamation in a pressure chamber. Bipolar electric charging of the internal voids was achieved through the application of high electric fields in an SF0 atmosphere. The new optimized PETP ferroelectric exhibit quite large piezoelectric coefficients up to almost 500 pCN(-1), for which unusually low elastic stiffness of only around 0.3 MPa are essential. The PETP foam ferroelectrics posses unclamped thickenss-extension resonance frequences between approximately 120 and 250 kHz, and are thus highly suitable for several established as well as novel ultrasonic-transductant applications.}, language = {en} } @article{WegenerWirgesGerhardetal.2004, author = {Wegener, Michael and Wirges, Werner and Gerhard, Reimund and Dansachm{\"u}ller, M. and Schw{\"o}diauer, R. and Bauer-Gogonea, Simona and Bauer, Siegfried and Paajanen, Mika and Minkkinen, Hannu and Raukola, J.}, title = {Controlled inflation of voids in cellular polymer ferroelectrets : optimizing electromechanical transducer properties}, year = {2004}, abstract = {When exposed to sufficiently high electric fields, polymer-foam electret materials with closed cells exhibit ferroelectric-like behavior and may therefore be called ferroelectrets. In cellular ferroelectrets, the influence of the cell size and shape distributions on the application-relevant properties is not yet understood. Therefore, controlled inflation experiments were carried out on cellular polypropylene films, and the resulting elastical and electromechanical parameters were determined. The elastic modulus in the thickness direction shows a minimum with a corresponding maximum in the electromechanical transducer coefficient. The resonance frequency shifts as a function of the elastic modulus and the relative density of the inflated cellular films. Therefore, the transducer properties of cellular ferroelectrets can be optimized by means of controlled inflation. (C) 2004 American Institute of Physics}, language = {en} } @article{QiuHollaenderWirgesetal.2013, author = {Qiu, Xunlin and Holl{\"a}nder, Lars and Wirges, Werner and Gerhard, Reimund and Basso, Heitor Cury}, title = {Direct hysteresis measurements on ferroelectret films by means of a modified Sawyer-Tower circuit}, series = {Journal of applied physics}, volume = {113}, journal = {Journal of applied physics}, number = {22}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.4809556}, pages = {8}, year = {2013}, abstract = {Ferro- and piezo-electrets are non-polar polymer foams or film systems with internally charged cavities. Since their invention more than two decades ago, ferroelectrets have become a welcome addition to the range of piezo-, pyro-, and ferro-electric materials available for device applications. A polarization-versus-electric-field hysteresis is an essential feature of a ferroelectric material and may also be used for determining some of its main properties. Here, a modified Sawyer-Tower circuit and a combination of unipolar and bipolar voltage waveforms are employed to record hysteresis curves on cellular-foam polypropylene ferroelectret films and on tubular-channel fluoroethylenepropylene copolymer ferroelectret film systems. Internal dielectric barrier discharges (DBDs) are required for depositing the internal charges in ferroelectrets. The true amount of charge transferred during the internal DBDs is obtained from voltage measurements on a standard capacitor connected in series with the sample, but with a much larger capacitance than the sample. Another standard capacitor with a much smaller capacitance-which is, however, still considerably larger than the sample capacitance-is also connected in series as a high-voltage divider protecting the electrometer against destructive breakdown. It is shown how the DBDs inside the polymer cavities lead to phenomenological hysteresis curves that cannot be distinguished from the hysteresis loops found on other ferroic materials. The physical mechanisms behind the hysteresis behavior are described and discussed.}, language = {en} } @article{BassoQiuWirgesetal.2013, author = {Basso, Heitor Cury and Qiu, Xunlin and Wirges, Werner and Gerhard, Reimund}, title = {Temporal evolution of the re-breakdown voltage in small gaps from nanoseconds to milliseconds}, series = {Applied physics letters}, volume = {102}, journal = {Applied physics letters}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4773518}, pages = {5}, year = {2013}, abstract = {A detailed understanding of electric breakdown in dielectrics is of scientific and technological interest. In gaseous dielectrics, a so-called re-breakdown is sometimes observed after extinction of the previous discharge. Although time-dependent re-breakdown voltage is essentially known, its behavior immediately after the previous discharge is not precisely understood. We present an electronic circuit for accurate measurements of the time-dependent re-breakdown voltage in small gaps from tens of nanoseconds to several milliseconds after the previous spark. Results from such experiments are compared with earlier findings, and relevant physical mechanisms such as heating of the gas, decay of the plasma, and ionization of excited atoms and molecules are discussed. It is confirmed that the thermal model is not valid at times below several microseconds.}, language = {en} } @article{WertheimerStGeorgesRobillardLerougeetal.2012, author = {Wertheimer, Michael R. and St-Georges-Robillard, Amelie and Lerouge, Sophie and Mwale, Fackson and Elkin, Bentsian and Oehr, Christian and Wirges, Werner and Gerhard, Reimund}, title = {Amine-rich organic thin films for cell culture - possible electrostatic effects in cell-surface interactions}, series = {Japanese journal of applied physics}, volume = {51}, journal = {Japanese journal of applied physics}, number = {11}, publisher = {Japan Soc. of Applied Physics}, address = {Tokyo}, issn = {0021-4922}, doi = {10.1143/JJAP.51.11PJ04}, pages = {5}, year = {2012}, abstract = {In recent communications from these laboratories, we observed that amine-rich thin organic layers are very efficient surfaces for the adhesion of mammalian cells. We prepare such deposits by plasma polymerization at low pressure, atmospheric pressure, or by vacuum-ultraviolet photo-polymerization. More recently, we have also investigated a commercially available material, Parylene diX AM. In this article we first briefly introduce literature relating to electrostatic interactions between cells, proteins, and charged surfaces. We then present certain selected cell-response results that pertain to applications in orthopedic and cardiovascular medicine: we discuss the influence of surface properties on the observed behaviors of two particular cell lines, human U937 monocytes, and Chinese hamster ovary cells. Particular emphasis is placed on possible electrostatic attractive forces due to positively charged R-NH3+ groups and negatively charged proteins and cells, respectively. Experiments carried out with electrets, polymers with high positive or negative surface potentials are added for comparison.}, language = {en} } @article{AltafimRychkovWirgesetal.2012, author = {Altafim, Ruy Alberto Pisani and Rychkov, Dmitry and Wirges, Werner and Gerhard, Reimund and Basso, Heitor Cury and Altafim, Ruy Alberto Pisani and Melzer, Martin}, title = {Laminated tubular-channel ferroelectret systems from low-density Polyethylene Films and from Fluoroethylene-propylene Copolymer Films - A comparison}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {19}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {4}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, pages = {1116 -- 1123}, year = {2012}, abstract = {A template-based lamination technique for the manufacture of ferroelectrets from uniform electret films was recently reported. In the present work, this technique is used to prepare similar ferroelectret structures from low-density polyethylene (LDPE) films and from fluoro-ethylene-propylene (FEP) copolymer films. A comparative analysis of the pressure-, temperature-, and frequency-dependent piezoelectric properties has been performed on the two ferroelectret systems. It is observed that the FEP ferroelectrets exhibit better piezoelectric responses and are thermally more stable. The difference between the piezoelectric d(33) coefficients of the two ferroelectret systems is partially explained here by their different elastic moduli. The anti-resonance peaks of both structures have been investigated by means of dielectric resonance spectroscopy and electroacoustic sound-pressure measurements. A difference of more than 10 kHz is observed between the anti-resonance frequencies of the two ferroelectret systems.}, language = {en} } @article{AltafimAltafimQiuetal.2012, author = {Altafim, Ruy Alberto Pisani and Altafim, Ruy Alberto Pisani and Qiu, Xunlin and Raabe, Sebastian and Wirges, Werner and Basso, Heitor Cury and Gerhard, Reimund}, title = {Fluoropolymer piezoelectrets with tubular channels resonance behavior controlled by channel geometry}, series = {Applied physics : A, Materials science \& processing}, volume = {107}, journal = {Applied physics : A, Materials science \& processing}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-012-6848-z}, pages = {965 -- 970}, year = {2012}, abstract = {Ferro- or piezoelectrets are dielectric materials with two elastically very different macroscopic phases and electrically charged interfaces between them. One of the newer piezoelectret variants is a system of two fluoroethylenepropylene (FEP) films that are first laminated around a polytetrafluoroethylene (PTFE) template. Then, by removing the PTFE template, a two-layer FEP structure with open tubular channels is obtained. After electrical charging, the channels form easily deformable macroscopic electric dipoles whose changes under mechanical or electrical stress lead to significant direct or inverse piezoelectricity, respectively. Here, different PTFE templates are employed to generate channel geometries that vary in height or width. It is shown that the control of the channel geometry allows a direct adjustment of the resonance frequencies in the tubular-channel piezoelectrets. By combining several different channel widths in a single ferroelectret, it is possible to obtain multiple resonance peaks that may lead to a rather flat frequency-response region of the transducer material. A phenomenological relation between the resonance frequency and the geometrical parameters of a tubular channel is also presented. This relation may help to design piezoelectrets with a specific frequency response.}, language = {en} } @article{SunZhangXiaetal.2011, author = {Sun, Zhuanlan and Zhang, Xiaoqing and Xia, Zhongfu and Qiu, Xunlin and Wirges, Werner and Gerhard, Reimund and Zeng, Changchun and Zhang, Chuck and Wang, Ben}, title = {Polarization and piezoelectricity in polymer films with artificial void structure}, series = {Applied physics : A, Materials science \& processing}, volume = {105}, journal = {Applied physics : A, Materials science \& processing}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-011-6481-2}, pages = {197 -- 205}, year = {2011}, abstract = {Laminated polymer-film systems with well-defined void structures were prepared from fluoroethylenepropylene (FEP) and polytetrafluoroethylene (PTFE) layers. First the PTFE films were patterned and then fusion-bonded with the FEP films. The laminates were subjected to either corona or contact charging in order to obtain the desired piezoelectricity. The build-up of the "macro-dipoles" in the laminated films was studied by recording the electric hysteresis loops. The resulting electro-mechanical properties were investigated by means of dielectric resonance spectroscopy (DRS) and direct measurements of the stress-strain relationship. Moreover, the thermal stability of the piezoelectric d (33) coefficient was investigated at elevated temperatures and via thermally stimulated discharge (TSD) current measurements in short circuit. For 150 mu m thick laminated films, consisting of one 25 mu m thick PTFE layer, two 12.5 mu m thick FEP layers, and a void of 100 mu m height, the critical voltage necessary for the build-up of the "macro-dipoles" in the inner voids was approximately 1400 V, which agrees with the value calculated from the Paschen Law. A quasi-static piezoelectric d (33) coefficient up to 300 pC/N was observed after corona charging. The mechanical properties of the film systems are highly anisotropic. At room temperature, the Young's moduli of the laminated film system are around 0.37 MPa in the thickness direction and 274 MPa in the lateral direction, respectively. Using these values, the theoretical shape anisotropy ratio of the void was calculated, which agrees well with experimental observation. Compared with films that do not exhibit structural regularity, the laminates showed improved thermal stability of the d (33) coefficients. The thermal stability of d (33) can be further improved by pre-aging. E.g., the reduction of the d (33) value in the sample pre-aged at 150A degrees C for 5 h was less than 5\% after annealing for 30 h at a temperature of 90A degrees C.}, language = {en} } @article{FangHollaenderWirgesetal.2012, author = {Fang, Peng and Hollaender, Lars and Wirges, Werner and Gerhard, Reimund}, title = {Piezoelectric d(33) coefficients in foamed and layered polymer piezoelectrets from dynamic mechano-electrical experiments, electro-mechanical resonance spectroscopy and acoustic-transducer measurements}, series = {Measurement science and technology}, volume = {23}, journal = {Measurement science and technology}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0957-0233}, doi = {10.1088/0957-0233/23/3/035604}, pages = {9}, year = {2012}, abstract = {Piezoelectrets are novel transducer materials which can be widely applied in sensors and actuators. Here, three techniques for determining piezoelectric d(33) coefficients of piezoelectrets are reviewed and compared. Two types of piezoelectrets, polyethylene-naphthalate (PEN) polymer-foam piezoelectrets and fluorinated ethylene-propylene (FEP) copolymer-layer piezoelectrets, have been prepared and measured by means of dynamic, resonance, and acoustical methods. The dynamic measurements show that the d(33) coefficient of PEN-foam samples clearly decreases with increasing stress, but 80\% of the initial d(33) can be retained after 1800 cycles of a continuous dynamic measurement in a mechanical fatigue test. The resonance measurements demonstrate that both PEN-foam and FEP-layer samples exhibit clear electro-mechanical resonances. PEN-foam samples show elastic moduli in the range from 1 to 12 MPa and d(33) values up to 500 pC N-1, while FEP-layer samples show homogeneous elastic moduli of about 0.3 MPa and d(33) values of about 280 pC N-1. The acoustical measurements reveal that both PEN-foam and FEP-layer samples exhibit stable frequency responses in the range from 5.7 to 20 kHz. In addition, d(33) coefficients obtained with different experimental methods are in good agreement with each other, which confirms the reliability of all three techniques.}, language = {en} } @article{QiuWirgesGerhard2011, author = {Qiu, Xunlin and Wirges, Werner and Gerhard, Reimund}, title = {Beneficial and detrimental fatigue effects of dielectric barrier discharges on the piezoelectricity of polypropylene ferroelectrets}, series = {Journal of applied physics}, volume = {110}, journal = {Journal of applied physics}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.3610507}, pages = {8}, year = {2011}, abstract = {Cellular polypropylene (PP) ferroelectrets combine a large piezoelectricity with mechanical flexibility and elastic compliance. Their charging process represents a series of dielectric barrier discharges (DBDs) that generate a cold plasma with numerous active species and thus modify the inner polymer surfaces of the foam cells. Both the threshold for the onset of DBDs and the piezoelectricity of ferroelectrets are sensitive to repeated DBDs in the voids. It is found that the threshold voltage is approximately halved and the charging efficiency is clearly improved after only 10(3) DBD cycles. However, plasma modification of the inner surfaces from repeated DBDs deteriorates the chargeability of the voids, leading to a significant reduction of the piezoelectricity in ferroelectrets. After a significant waiting period, the chargeability of previously fatigued voids shows a partial recovery. The plasma modification is, however, detrimental to the stability of the deposited charges and thus also of the macroscopic dipoles and of the piezoelectricity. Fatigue from only 10(3) DBD cycles already results in significantly less stable piezoelectricity in cellular PP ferroelectrets. The fatigue rate as a function of the number of voltage cycles follows a stretched exponential. Fatigue from repeated DBDs can be avoided if most of the gas molecules inside the voids are removed via a suitable evacuation process.}, language = {en} } @article{SborikasQiuWirgesetal.2014, author = {Sborikas, Martynas and Qiu, Xunlin and Wirges, Werner and Gerhard, Reimund and Jenninger, Werner and Lovera, Deliani}, title = {Screen printing for producing ferroelectret systems with polymer-electret films and well-defined cavities}, series = {Applied physics : A, Materials science \& processing}, volume = {114}, journal = {Applied physics : A, Materials science \& processing}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-013-7998-3}, pages = {515 -- 520}, year = {2014}, abstract = {We report a process for preparing polymer ferroelectrets by means of screen printing-a technology that is widely used for the two-dimensional patterning of printed layers. In order to produce polymer-film systems with cavities that are suitable for bipolar electric charging, a screen-printing paste is deposited through a screen with a pre-designed pattern onto the surface of a polymer electret film. Another such polymer film is placed on top of the printed pattern, and well-defined cavities are formed in-between. During heating and curing, the polymer films are tightly bonded to the patterned paste layer so that a stable three-layer system is obtained. In the present work, polycarbonate (PC) films have been employed as electret layers. Screen printing, curing and charging led to PC ferroelectret systems with a piezoelectric d (33) coefficient of about 28 pC/N that is stable up to 100 C-a similar to. Due to the rather soft patterned layer, d (33) strongly decreases already for static pressures of tens of kPa. The results demonstrate the suitability of screen printing for the preparation of ferroelectret systems.}, language = {en} } @article{QiuWirgesGerhard2014, author = {Qiu, Xunlin and Wirges, Werner and Gerhard, Reimund}, title = {Polarization and Hysteresis in Tubular-Channel Fluoroethylenepropylene-Copolymer Ferroelectrets}, series = {Ferroelectrics}, volume = {472}, journal = {Ferroelectrics}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0015-0193}, doi = {10.1080/00150193.2014.964603}, pages = {100 -- 109}, year = {2014}, abstract = {Polarization-vs.-applied-voltage hysteresis curves are recorded on tubular-channel fluoroethylene-propylene (FEP) copolymer ferroelectrets by means of a modified Sawyer-Tower circuit. Dielectric barrier discharges (DBDs) inside the cavities are triggered when the applied voltage is sufficiently high. During the DBDs, the cavities become man-made macroscopic dipoles which build up an effective polarization in the ferroelectret. Therefore, a phenomenological hysteresis curve is observed. From the hysteresis loop, the remanent polarization and the coercive field can be determined. Furthermore, the polarization can be related to the respective piezoelectric coefficient of the ferroelectret. The proposed method is easy to implement and is useful for characterization, further development and optimization of ferro- or piezoelectrets.}, language = {en} } @article{QiuWirgesGerhard2016, author = {Qiu, Xunlin and Wirges, Werner and Gerhard, Reimund}, title = {Thermal poling of ferroelectrets: How does the gas temperature influence dielectric barrier discharges in cavities?}, series = {Applied physics letters}, volume = {108}, journal = {Applied physics letters}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4954263}, pages = {1687 -- 1697}, year = {2016}, abstract = {The influence of the temperature in the gas-filled cavities on the charging process of ferroelectret film systems has been studied in hysteresis measurements. The threshold voltage and the effective polarization of the ferroelectrets were determined as functions of the charging temperature TP. With increasing TP, the threshold voltage for triggering dielectric barrier discharges in ferroelectrets decreases. Thus, increasing the temperature facilitates the charging of ferroelectrets. However, a lower threshold voltage reduces the attainable remanent polarization because back discharges occur at lower charge levels, as soon as the charging voltage is turned off. The results are discussed in view of Paschen's law for electrical breakdown, taking into account the respective gas temperature and a simplified model for ferroelectrets. Our results indicate that the thermal poling scheme widely used for conventional ferroelectrics is also useful for electrically charging ferroelectrets. Ferroelectrets (sometimes also called piezoelectrets) are relatively new members of the family of piezo-, pyro-, and ferroelectric materials.1-5 As their name indicates, ferroelectrets are space-charge electrets that show ferroic behavior. They are non-uniform electret materials or materials systems with electrically charged internal cavities. As space-charge electrets, ferroelectrets usually do not contain any molecular dipoles. However, the cavities inside the material can be turned into macroscopic dipoles through a series of micro-plasma discharges at high electric fields, so-called dielectric barrier discharges (DBDs).6-8 The gas inside the cavities is ionized when the internal electric field exceeds the threshold for electrical breakdown, generating charges of both polarities.9 The positive and negative charges travel in opposite directions, and are eventually trapped at the internal top and bottom surfaces of the cavities, respectively. After charging, the cavities may be regarded as macroscopic dipoles that can be switched by reversing the applied voltage. An electric-polarization-vs.-electric-field (P(E)) hysteresis is considered as an essential criterion for ferroelectricity. P(E)-hysteresis curves are usually characterized by the spontaneous polarization, the coercive field, and the remanent polarization. Recently, we have demonstrated P(E)-hysteresis loops on two different types of ferroelectrets, namely, cellular polypropylene ferroelectrets and tubular-channel fluoroethylene-polypropylene copolymer ferroelectrets.10,11 The P(E)-hysteresis loops not only prove the ferroic behavior of ferroelectrets, but also allow us to determine such parameters as the coercive field and the remanent polarization. It is widely accepted that Paschen breakdown is the underlying mechanism for the inception of DBDs in ferroelectrets.12-14 On this basis, the charging behavior and the resulting piezoelectricity of ferroelectrets in different gases at various pressures have been studied.15-17 Paschen's law describes the conditions for electrical breakdown in a gas at a constant temperature (usually room temperature), and it needs to be modified for gas breakdown at other temperatures. The temperature stability of the piezoelectricity in ferroelectrets after charging at elevated temperatures was investigated by several researchers.18-21 Recently, a preliminary report about the effects of the charging temperature on the hysteresis loops in ferroelectrets has been presented.22 In this letter, the influence of the gas temperature on the charging of ferroelectret systems is investigated in more detail by means of quasi-ferroelectric hysteresis-loop measurements. Teflon™ fluoroethylenepropylene (FEP) copolymer samples with tubular channels were prepared via thermal lamination as described previously.23 To this end, two FEP films with a thickness of 50 \&\#956;m each were laminated at 300 ° C around a 100 \&\#956;m thick polytetrafluoroethylene (PTFE) template (total area 35 mm × 45 mm) that contains parallel rectangular openings (area 1.5 mm × 40 mm each). After lamination, the template was removed, which results in an FEP film system with open tubular channels. The samples were metallized on both surfaces with aluminum electrodes of 20 mm diameter. P(E)-hysteresis loops were obtained with a modified Sawyer-Tower (ST) circuit.10,11 A high-voltage (HV) capacitor C1 (3 nF) and a large standard capacitor Cm (1 \&\#956;F) were connected in series with the sample. A bipolar sinusoidal voltage with a frequency of 10 mHz was applied from an HV power supply (FUG HCB 7-6500) controlled by an arbitrary-waveform generator (HP 33120a). The voltage Vout on Cm is measured by means of an electrometer (HP 3458a), and the charge flowing through the circuit is determined as Q(t)=CmVout(t) . The experiments were carried out at isothermal conditions in a Novocontrol® Quatro cryosystem. With the modified ST circuit, Q-V loops have been measured on a tubular-channel FEP ferroelectret system at different temperatures. The sample capacitance of about 34.5 pF is determined by a linear fit of the initial part of the Q-V curve recorded at 20 °C , where the voltage has been raised up from zero on a fresh sample. The hysteresis loops are obtained from the Q-V curves by subtracting the contribution that results from charging of the sample capacitance.10 Figure 1 shows the hysteresis loops of the sample at \&\#8722;100, 0, and +100 ° C, respectively. According to previous theoretical and experimental studies,24,25 the length of each of the horizontal sides of the parallelogram-like hysteresis loops is given by 2Vth where Vth is the threshold voltage. As the charging temperature decreases, the hysteresis loop becomes wider and less high, i.e., the threshold voltage increases, while the polarization at maximum voltage decreases.}, language = {en} } @article{MazurekYuGerhardetal.2016, author = {Mazurek, P. and Yu, L. and Gerhard, Reimund and Wirges, Werner and Skov, A. L.}, title = {Glycerol as high-permittivity liquid filler in dielectric silicone elastomers}, series = {Journal of applied polymer science}, volume = {133}, journal = {Journal of applied polymer science}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-8995}, doi = {10.1002/app.44153}, pages = {8}, year = {2016}, abstract = {A recently reported novel class of elastomers was tested with respect to its dielectric properties. The new elastomer material is based on a commercially available poly(dimethylsiloxane) composition, which has been modified by embedding glycerol droplets into its matrix. The approach has two major advantages that make the material useful in a dielectric actuator. First, the glycerol droplets efficiently enhance the dielectric constant, which can reach astonishingly high values in the composite. Second, the liquid filler also acts as a softener that effectively decreases the elastic modulus of the composite. In combination with very low cost and easy preparation, the two property enhancements lead to an extremely attractive dielectric elastomer material. Experimental permittivity data are compared to various theoretical models that predict relative permittivity changes as a function of filler loading, and the applicability of the models is discussed. (c) 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44153.}, language = {en} } @article{HollaenderKossackKolloscheetal.2016, author = {Holl{\"a}nder, Lars and Kossack, Wilhelm and Kollosche, Matthias and Wirges, Werner and Kremer, Friedrich and Gerhard, Reimund}, title = {Influence of the remanent polarisation on the liquid crystal alignment in composite films of ferroelectric poly(vinylidene fluoride-trifluoroethylene) and a cyanobiphenyl-based liquid crystal}, series = {Liquid crystals : an international journal of science and technology}, volume = {43}, journal = {Liquid crystals : an international journal of science and technology}, publisher = {Editions Rodopi BV}, address = {Abingdon}, issn = {0267-8292}, doi = {10.1080/02678292.2016.1185174}, pages = {1514 -- 1521}, year = {2016}, abstract = {Polymer-dispersed liquid crystals (PDLCs) of ferroelectric poly(vinylidene fluoride-trifluoroethylene) and nematic 4-cyano-4\&\#697;-n-hexylbiphenyl (6CB) or 4-cyano-4\&\#697;-n-pentylbiphenyl (5CB) were prepared to study the effect of the remanent polarisation of the polymer on the liquid crystal alignment. We measured the macroscopic alignment of the liquid crystal molecules in the thickness direction by means of Infrared Transition-Moment Orientational Analysis. Electrical poling at 100 V/µm caused an increased order parameter up to 0.15. After subsequent annealing above the nematic-to-isotropic phase-transition temperature, the order parameter was reduced to 0.02. Nevertheless, the order parameter was still higher than for non-poled film indicating a slight orientation in thickness direction. Both values are lower than those expected from model calculations. In agreement with dielectric measurements, we attribute this result to the shielding effect of mobile charge carriers within the liquid crystal inclusions.}, language = {en} } @article{FloresSuarezMellingerWegeneretal.2006, author = {Flores Su{\´a}rez, Rosaura and Mellinger, Axel and Wegener, Michael and Wirges, Werner and Gerhard, Reimund and Singh, Rajeev}, title = {Thermal-pulse tomography of polarization distributions in a cylindrical geometry}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {13}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {5}, publisher = {IEEE}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2006.258210}, pages = {1030 -- 1035}, year = {2006}, abstract = {Fast, three-dimensional polarization mapping in piezoelectric sensor cables was performed by means of the novel thermal-pulse tomography (TPT) technique with a lateral resolution of 200 mum. The active piezoelectric cable material (a copolymer of polyvinylidene fluoride with trifluoroethylene) was electrically poled with a point-to-cable corona discharge. A focused laser was employed to heat the opaque outer electrode, and the short-circuit current generated by the thermal pulse was used to obtain 3D polarization maps via the scale transformation method. The article describes the TPT technique as a fast non-destructive option for studying cylindrical geometries.}, language = {en} } @misc{LouposDamigosTsertouetal.2019, author = {Loupos, Konstantinos and Damigos, Yannis and Tsertou, Athanasisa and Amditis, Angelos and Lenas, Sotiris-Angelos and Chatziandreoglou, Chistos and Malliou, Christina and Tsaoussidis, Vassilis and Gerhard, Reimund and Rychkov, Dmitry and Wirges, Werner and Frankenstein, Bernd and Camarinopoulos, Stephanos and Kalidromitis, Vassilis and Sanna, C. and Maier, Stephanos and Gordt, A. and Panetsos, P.}, title = {Innovative soft-material sensor, wireless network and assessment software for bridge life-cycle assessment}, series = {Life-cycle analysis and assessmanet in civil engineering : towards an integrated vision}, journal = {Life-cycle analysis and assessmanet in civil engineering : towards an integrated vision}, publisher = {CRC Press, Taylor \& Francis Group}, address = {Boca Raton}, isbn = {978-1-315-22891-4}, pages = {2085 -- 2092}, year = {2019}, abstract = {Nowadays, structural health monitoring of critical infrastructures is considered as of primal importance especially for managing transport infrastructure however most current SHM methodologies are based on point-sensors that show various limitations relating to their spatial positioning capabilities, cost of development and measurement range. This publication describes the progress in the SENSKIN EC co-funded research project that is developing a dielectric-elastomer sensor, formed from a large highly extensible capacitance sensing membrane and is supported by an advanced micro-electronic circuitry, for monitoring transport infrastructure bridges. The sensor under development provides spatial measurements of strain in excess of 10\%, while the sensing system is being designed to be easy to install, require low power in operation concepts, require simple signal processing, and have the ability to self-monitor and report. An appropriate wireless sensor network is also being designed and developed supported by local gateways for the required data collection and exploitation. SENSKIN also develops a Decision-Support-System (DSS) for proactive condition-based structural interventions under normal operating conditions and reactive emergency intervention following an extreme event. The latter is supported by a life-cycle-costing (LCC) and life-cycle-assessment (LCA) module responsible for the total internal and external costs for the identified bridge rehabilitation, analysis of options, yielding figures for the assessment of the economic implications of the bridge rehabilitation work and the environmental impacts of the bridge rehabilitation options and of the associated secondary effects respectively. The overall monitoring system will be evaluated and benchmarked on actual bridges of Egnatia Highway (Greece) and Bosporus Bridge (Turkey).}, language = {en} } @article{QiuGrothWirgesetal.2018, author = {Qiu, Xunlin and Groth, Frederick and Wirges, Werner and Gerhard, Reimund}, title = {Cellular polypropylene foam films as DC voltage insulation and as piezoelectrets}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {25}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {3}, publisher = {Institut of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2018.007192}, pages = {829 -- 834}, year = {2018}, abstract = {Polymer foams are in industrial use for several decades. More recently, non-polar polymer foams were found to be piezoelectric (so-called piezoelectrets) after internal electrical charging of the cavities. So far, few studies have been carried out on the electrical-insulation properties of polymer foams. Here, we compare the piezoelectric and the DC-voltage electrical-insulation properties of cellular polypropylene (PP) foams. Their cavity microstructure can be adjusted via inflation in high-pressure nitrogen gas in combination with a subsequent thermal treatment. While inflation is effective for improving the piezoelectricity, it is detrimental for the electrical-insulation properties. The original cellular PP foam shows a breakdown strength of approximately 230 MV/m, within the same range as that of solid PP. The breakdown strength decreases with increasing degree of inflation, and the dependence on the foam thickness follows an inverse power law with an exponent of 1.2. Nevertheless, up to a thickness of 140 mu m (3.5 times the original thickness), the breakdown strength of cellular-foam PP films is at least 7 times that of an air gap with the same thickness. In addition, the influence of high temperatures and high humidities on the piezoelectricity and the breakdown strength of cellular PP was studied. It was found that the piezoelectric d(33) coefficient decays rapidly already at 70 degrees C, while the breakdown strength slightly increases during storage at 70 or 90 degrees C. Under a relative humidity of 95\%, the breakdown strength increases with storage time, while the piezoelectric d(33) coefficient slightly decreases.}, language = {en} } @misc{LouposDamigosAmditisetal.2017, author = {Loupos, Konstantinos and Damigos, Yannis and Amditis, Angelos and Gerhard, Reimund and Rychkov, Dmitry and Wirges, Werner and Schulze, Manuel and Lenas, Sotiris-Angelos and Chatziandreoglou, Christos and Malliou, Christina and Tsaoussidis, Vassilis and Brady, Ken and Frankenstein, Bernd}, title = {Structural health monitoring system for bridges based on skin-like sensor}, series = {IOP conference series : Materials science and engineering}, volume = {236}, journal = {IOP conference series : Materials science and engineering}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1757-8981}, doi = {10.1088/1757-899X/236/1/012100}, pages = {10}, year = {2017}, abstract = {Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10\%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.}, language = {en} } @article{AssagraAltafimdoCarmoetal.2020, author = {Assagra, Yuri A.O. and Altafim, Ruy Alberto Pisani and do Carmo, Joao P. and Altafim, Ruy A.C. and Rychkov, Dmitry and Wirges, Werner and Gerhard, Reimund}, title = {A new route to piezo-polymer transducers: 3D printing of polypropylene ferroelectrets}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {27}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {5}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2020.008461}, pages = {1668 -- 1674}, year = {2020}, abstract = {Here, a promising approach for producing piezo-polymer transducers in a one-step process is presented. Using 3D-printing technology and polypropylene (PP) filaments, we are able to print a two-layered film structure with regular cavities of precisely controlled size and shape. It is found that the 3D-printed samples exhibit piezoelectric coefficients up to 200 pC/N, similar to those of other PP ferroelectrets, and their temporal and thermal behavior is in good agreement with those known of PP ferroelectrets. The piezoelectric response strongly decreases for applied pressures above 20 kPa, as the pressure in the air-filled cavities strongly influences the overall elastic modulus of ferroelectrets.}, language = {en} } @article{YilmazWirgesBauerGogoneaetal.1997, author = {Yilmaz, S{\"u}kr{\"u} and Wirges, Werner and Bauer-Gogonea, Simona and Bauer, Siegfried and Gerhard, Reimund and Michelotti, F. and Toussaere, E. and Levenson, R. and Liang, J. and Zyss, Joseph}, title = {Dielectric, pyroelectric and electro-optic monitoring of the cross-linking process and photo-induced poling of Red Acid Magly}, year = {1997}, language = {en} }