@misc{MaslinBrierleyMilneretal.2014, author = {Maslin, Mark A. and Brierley, Chris M. and Milner, Alice M. and Shultz, Susanne and Trauth, Martin H. and Wilson, Katy E.}, title = {East African climate pulses and early human evolution}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {101}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2014.06.012}, pages = {1 -- 17}, year = {2014}, abstract = {Current evidence suggests that all of the major events in hominin evolution have occurred in East Africa. Over the last two decades, there has been intensive work undertaken to understand African palaeoclimate and tectonics in order to put together a coherent picture of how the environment of East Africa has varied in the past. The landscape of East Africa has altered dramatically over the last 10 million years. It has changed from a relatively flat, homogenous region covered with mixed tropical forest, to a varied and heterogeneous environment, with mountains over 4 km high and vegetation ranging from desert to cloud forest. The progressive rifting of East Africa has also generated numerous lake basins, which are highly sensitive to changes in the local precipitation-evaporation regime. There is now evidence that the presence of precession-driven, ephemeral deep-water lakes in East Africa were concurrent with major events in hominin evolution. It seems the unusual geology and climate of East Africa created periods of highly variable local climate, which, it has been suggested could have driven hominin speciation, encephalisation and dispersal out of Africa. One example is the significant hominin speciation and brain expansion event at -1.8 Ma that seems to have been coeval with the occurrence of highly variable, extensive, deep-water lakes. This complex, climatically very variable setting inspired first the variability selection hypothesis, which was then the basis for the pulsed climate variability hypothesis. The newer of the two suggests that the long-term drying trend in East Africa was punctuated by episodes of short, alternating periods of extreme humidity and aridity. Both hypotheses, together with other key theories of climate-evolution linkages, are discussed in this paper. Though useful the actual evolution mechanisms, which led to early hominins are still unclear and continue to be debated. However, it is clear that an understanding of East African lakes and their palaeoclimate history is required to understand the context within which humans evolved and eventually left East Africa. (C) 2014 The Authors. Published by Elsevier Ltd.}, language = {en} } @article{MaslinPancostWilsonetal.2012, author = {Maslin, Mark A. and Pancost, Richard D. and Wilson, Katy E. and Lewis, Jonathan and Trauth, Martin H.}, title = {Three and half million year history of moisture availability of South West Africa evidence from ODP site 1085 biomarker records}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {317}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2011.12.009}, pages = {41 -- 47}, year = {2012}, abstract = {Ocean Drilling Program Site 1085 provides a continuous marine sediment record off southern South West Africa for at least the last three and half million years. The n-alkane partial derivative(13) C record from this site records changes in past vegetation and provides an indication of the moisture availability of SW Africa during this time period. Very little variation, and no apparent trend, is observed in the n-alkane delta C-13 record, suggesting stable long-term conditions despite significant changes in East African tectonics and global climate. Slightly higher n-alkane delta C-13 values occur between 3.5 and 2.7 Ma suggesting slightly drier conditions than today. Between 2.5 and 2.7 Ma there is a shift to more negative n-alkane delta C-13 values suggesting slightly wetter conditions during a similar to 0.2 Ma episode that coincides with the intensification of Northern Hemisphere Glaciation (iNHG). From 2.5 to 0.4 Ma the n-alkane delta C-13 values are very consistent, varying by less than +/- 0.5 parts per thousand and suggesting little or no long-term change in the moisture availability of South West Africa over the last 2.5 million years. This is in contrast to the long-term drying trend observed further north offshore from the Namib Desert and in East Africa. A comparison of the climate history of these regions suggests that Southern Africa may have been an area of long-term stability over the last 3.5 Myrs.}, language = {en} }