@misc{HischeLarhlimiSchwarzetal.2012, author = {Hische, Manuela and Larhlimi, Abdelhalim and Schwarz, Franziska and Fischer-Rosinsk{\´y}, Antje and Bobbert, Thomas and Assmann, Anke and Catchpole, Gareth S. and Pfeiffer, Andreas F. H. and Willmitzer, Lothar and Selbig, Joachim and Spranger, Joachim}, title = {A distinct metabolic signature predictsdevelopment of fasting plasma glucose}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {850}, issn = {1866-8372}, doi = {10.25932/publishup-42740}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427400}, pages = {12}, year = {2012}, abstract = {Background High blood glucose and diabetes are amongst the conditions causing the greatest losses in years of healthy life worldwide. Therefore, numerous studies aim to identify reliable risk markers for development of impaired glucose metabolism and type 2 diabetes. However, the molecular basis of impaired glucose metabolism is so far insufficiently understood. The development of so called 'omics' approaches in the recent years promises to identify molecular markers and to further understand the molecular basis of impaired glucose metabolism and type 2 diabetes. Although univariate statistical approaches are often applied, we demonstrate here that the application of multivariate statistical approaches is highly recommended to fully capture the complexity of data gained using high-throughput methods. Methods We took blood plasma samples from 172 subjects who participated in the prospective Metabolic Syndrome Berlin Potsdam follow-up study (MESY-BEPO Follow-up). We analysed these samples using Gas Chromatography coupled with Mass Spectrometry (GC-MS), and measured 286 metabolites. Furthermore, fasting glucose levels were measured using standard methods at baseline, and after an average of six years. We did correlation analysis and built linear regression models as well as Random Forest regression models to identify metabolites that predict the development of fasting glucose in our cohort. Results We found a metabolic pattern consisting of nine metabolites that predicted fasting glucose development with an accuracy of 0.47 in tenfold cross-validation using Random Forest regression. We also showed that adding established risk markers did not improve the model accuracy. However, external validation is eventually desirable. Although not all metabolites belonging to the final pattern are identified yet, the pattern directs attention to amino acid metabolism, energy metabolism and redox homeostasis. Conclusions We demonstrate that metabolites identified using a high-throughput method (GC-MS) perform well in predicting the development of fasting plasma glucose over several years. Notably, not single, but a complex pattern of metabolites propels the prediction and therefore reflects the complexity of the underlying molecular mechanisms. This result could only be captured by application of multivariate statistical approaches. Therefore, we highly recommend the usage of statistical methods that seize the complexity of the information given by high-throughput methods.}, language = {en} } @misc{GaertnerSteinfathAndorfetal.2009, author = {G{\"a}rtner, Tanja and Steinfath, Matthias and Andorf, Sandra and Lisec, Jan and Meyer, Rhonda C. and Altmann, Thomas and Willmitzer, Lothar and Selbig, Joachim}, title = {Improved heterosis prediction by combining information on DNA- and metabolic markers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45132}, year = {2009}, abstract = {Background: Hybrids represent a cornerstone in the success story of breeding programs. The fundamental principle underlying this success is the phenomenon of hybrid vigour, or heterosis. It describes an advantage of the offspring as compared to the two parental lines with respect to parameters such as growth and resistance against abiotic or biotic stress. Dominance, overdominance or epistasis based models are commonly used explanations. Conclusion/Significance: The heterosis level is clearly a function of the combination of the parents used for offspring production. This results in a major challenge for plant breeders, as usually several thousand combinations of parents have to be tested for identifying the best combinations. Thus, any approach to reliably predict heterosis levels based on properties of the parental lines would be highly beneficial for plant breeding. Methodology/Principal Findings: Recently, genetic data have been used to predict heterosis. Here we show that a combination of parental genetic and metabolic markers, identified via feature selection and minimum-description-length based regression methods, significantly improves the prediction of biomass heterosis in resulting offspring. These findings will help furthering our understanding of the molecular basis of heterosis, revealing, for instance, the presence of nonlinear genotype-phenotype relationships. In addition, we describe a possible approach for accelerated selection in plant breeding.}, language = {en} } @article{MeyerWituckaWallBecheretal.2012, author = {Meyer, Rhonda C. and Witucka-Wall, Hanna and Becher, Martina and Blacha, Anna Maria and Boudichevskaia, Anastassia and D{\"o}rmann, Peter and Fiehn, Oliver and Friedel, Svetlana and von Korff, Maria and Lisec, Jan and Melzer, Michael and Repsilber, Dirk and Schmidt, Renate and Scholz, Matthias and Selbig, Joachim and Willmitzer, Lothar and Altmann, Thomas}, title = {Heterosis manifestation during early Arabidopsis seedling development is characterized by intermediate gene expression and enhanced metabolic activity in the hybrids}, series = {The plant journal}, volume = {71}, journal = {The plant journal}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/j.1365-313X.2012.05021.x}, pages = {669 -- 683}, year = {2012}, abstract = {Heterosis-associated cellular and molecular processes were analyzed in seeds and seedlings of Arabidopsis thaliana accessions Col-0 and C24 and their heterotic hybrids. Microscopic examination revealed no advantages in terms of hybrid mature embryo organ sizes or cell numbers. Increased cotyledon sizes were detectable 4 days after sowing. Growth heterosis results from elevated cell sizes and numbers, and is well established at 10 days after sowing. The relative growth rates of hybrid seedlings were most enhanced between 3 and 4 days after sowing. Global metabolite profiling and targeted fatty acid analysis revealed maternal inheritance patterns for a large proportion of metabolites in the very early stages. During developmental progression, the distribution shifts to dominant, intermediate and heterotic patterns, with most changes occurring between 4 and 6 days after sowing. The highest incidence of heterotic patterns coincides with establishment of size differences at 4 days after sowing. In contrast, overall transcript patterns at 4, 6 and 10 days after sowing are characterized by intermediate to dominant patterns, with parental transcript levels showing the largest differences. Overall, the results suggest that, during early developmental stages, intermediate gene expression and higher metabolic activity in the hybrids compared to the parents lead to better resource efficiency, and therefore enhanced performance in the hybrids.}, language = {en} } @article{KehrHaebelBlechschmidtSchneideretal.1999, author = {Kehr, Julia and Haebel, Sophie and Blechschmidt-Schneider, Sabine and Willmitzer, Lothar and Steup, Martin and Fisahn, Joachim}, title = {Analysis of phloem protein patterns from different organs of Cucurbita maxima Duch. by matrix-assisted laser desorption/ionization time of flight mass spectroscopy combined with sodium dodecyl sufate-polyacryilamide gel electrophoresis}, year = {1999}, language = {en} } @article{DuwenigSteupWillmitzeretal.1997, author = {Duwenig, Elke and Steup, Martin and Willmitzer, Lothar and Kossmann, Jens}, title = {Antisense inhibition of cytosolic phosphorylase in potato plants (Solanum tuberosum L.) affects tuber sprouting and flower formation with only little impact on carbohydrate metabolism}, year = {1997}, language = {en} } @article{TenenboimSmirnovaWillmitzeretal.2014, author = {Tenenboim, Hezi and Smirnova, Julia and Willmitzer, Lothar and Steup, Martin and Brotman, Yariv}, title = {VMP1-deficient Chlamydomonas exhibits severely aberrant cell morphology and disrupted cytokinesies}, series = {BMC plant biology}, volume = {14}, journal = {BMC plant biology}, publisher = {BioMed Central}, address = {London}, issn = {1471-2229}, doi = {10.1186/1471-2229-14-121}, pages = {13}, year = {2014}, abstract = {Background: The versatile Vacuole Membrane Protein 1 (VMP1) has been previously investigated in six species. It has been shown to be essential in macroautophagy, where it takes part in autophagy initiation. In addition, VMP1 has been implicated in organellar biogenesis; endo-, exo- and phagocytosis, and protein secretion; apoptosis; and cell adhesion. These roles underly its proven involvement in pancreatitis, diabetes and cancer in humans. Results: In this study we analyzed a VMP1 homologue from the green alga Chlamydomonas reinhardtii. CrVMP1 knockdown lines showed severe phenotypes, mainly affecting cell division as well as the morphology of cells and organelles. We also provide several pieces of evidence for its involvement in macroautophagy.}, language = {en} } @misc{SteinfathGaertnerLisecetal.2009, author = {Steinfath, Matthias and G{\"a}rtner, Tanja and Lisec, Jan and Meyer, Rhonda C. and Altmann, Thomas and Willmitzer, Lothar and Selbig, Joachim}, title = {Prediction of hybrid biomass in Arabidopsis thaliana by selected parental SNP and metabolic markers}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1324}, issn = {1866-8372}, doi = {10.25932/publishup-43111}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431115}, pages = {9}, year = {2009}, abstract = {A recombinant inbred line (RIL) population, derived from two Arabidopsis thaliana accessions, and the corresponding testcrosses with these two original accessions were used for the development and validation of machine learning models to predict the biomass of hybrids. Genetic and metabolic information of the RILs served as predictors. Feature selection reduced the number of variables (genetic and metabolic markers) in the models by more than 80\% without impairing the predictive power. Thus, potential biomarkers have been revealed. Metabolites were shown to bear information on inherited macroscopic phenotypes. This proof of concept could be interesting for breeders. The example population exhibits substantial mid-parent biomass heterosis. The results of feature selection could therefore be used to shed light on the origin of heterosis. In this respect, mainly dominance effects were detected.}, language = {en} } @article{MeyerKustererLisecetal.2009, author = {Meyer, Rhonda Christiane and Kusterer, Barbara and Lisec, Jan and Steinfath, Matthias and Becher, Martina and Scharr, Hanno and Melchinger, Albrecht E. and Selbig, Joachim and Schurr, Ulrich and Willmitzer, Lothar and Altmann, Thomas}, title = {QTL analysis of early stage heterosis for biomass in Arabidopsis}, series = {Theoretical and applied genetics}, volume = {129}, journal = {Theoretical and applied genetics}, number = {2}, publisher = {Springer Nature}, address = {Berlin}, issn = {1432-2242}, doi = {10.1007/s00122-009-1074-6}, pages = {227 -- 237}, year = {2009}, abstract = {The main objective of this study was to identify genomic regions involved in biomass heterosis using QTL, generation means, and mode-of-inheritance classification analyses. In a modified North Carolina Design III we backcrossed 429 recombinant inbred line and 140 introgression line populations to the two parental accessions, C24 and Col-0, whose F 1 hybrid exhibited 44\% heterosis for biomass. Mid-parent heterosis in the RILs ranged from -31 to 99\% for dry weight and from -58 to 143\% for leaf area. We detected ten genomic positions involved in biomass heterosis at an early developmental stage, individually explaining between 2.4 and 15.7\% of the phenotypic variation. While overdominant gene action was prevalent in heterotic QTL, our results suggest that a combination of dominance, overdominance and epistasis is involved in biomass heterosis in this Arabidopsis cross.}, language = {en} } @misc{MeyerKustererLisecetal.2009, author = {Meyer, Rhonda Christiane and Kusterer, Barbara and Lisec, Jan and Steinfath, Matthias and Becher, Martina and Scharr, Hanno and Melchinger, Albrecht E. and Selbig, Joachim and Schurr, Ulrich and Willmitzer, Lothar and Altmann, Thomas}, title = {QTL analysis of early stage heterosis for biomass in Arabidopsis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1330}, issn = {1866-8372}, doi = {10.25932/publishup-43127}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431272}, pages = {11}, year = {2009}, abstract = {The main objective of this study was to identify genomic regions involved in biomass heterosis using QTL, generation means, and mode-of-inheritance classification analyses. In a modified North Carolina Design III we backcrossed 429 recombinant inbred line and 140 introgression line populations to the two parental accessions, C24 and Col-0, whose F 1 hybrid exhibited 44\% heterosis for biomass. Mid-parent heterosis in the RILs ranged from -31 to 99\% for dry weight and from -58 to 143\% for leaf area. We detected ten genomic positions involved in biomass heterosis at an early developmental stage, individually explaining between 2.4 and 15.7\% of the phenotypic variation. While overdominant gene action was prevalent in heterotic QTL, our results suggest that a combination of dominance, overdominance and epistasis is involved in biomass heterosis in this Arabidopsis cross.}, language = {en} } @article{SteinfathGaertnerLisecetal.2009, author = {Steinfath, Matthias and G{\"a}rtner, Tanja and Lisec, Jan and Meyer, Rhonda Christiane and Altmann, Thomas and Willmitzer, Lothar and Selbig, Joachim}, title = {Prediction of hybrid biomass in Arabidopsis thaliana by selected parental SNP and metabolic markers}, series = {Theoretical and applied genetics : TAG ; international journal of plant breeding research}, volume = {120}, journal = {Theoretical and applied genetics : TAG ; international journal of plant breeding research}, publisher = {Springer}, address = {Berlin}, issn = {0040-5752}, doi = {10.1007/s00122-009-1191-2}, pages = {239 -- 247}, year = {2009}, abstract = {A recombinant inbred line (RIL) population, derived from two Arabidopsis thaliana accessions, and the corresponding testcrosses with these two original accessions were used for the development and validation of machine learning models to predict the biomass of hybrids. Genetic and metabolic information of the RILs served as predictors. Feature selection reduced the number of variables (genetic and metabolic markers) in the models by more than 80\% without impairing the predictive power. Thus, potential biomarkers have been revealed. Metabolites were shown to bear information on inherited macroscopic phenotypes. This proof of concept could be interesting for breeders. The example population exhibits substantial mid-parent biomass heterosis. The results of feature selection could therefore be used to shed light on the origin of heterosis. In this respect, mainly dominance effects were detected.}, language = {en} }