@article{WeisSpiekermannSternemannetal.2018, author = {Weis, Christopher and Spiekermann, Georg and Sternemann, Christian and Harder, Manuel and Vanko, Gyorgy and Cerantola, Valerio and Sahle, Christoph J. and Forov, Yury and Sakrowski, Robin and Kupenko, Ilya and Petitgirard, Sylvain and Yavas, Hasan and Bressler, Christian and Gawelda, Wojciech and Tolan, Metin and Wilke, Max}, title = {Combining X-ray K beta(1,3), valence-to-core, and X-ray Raman spectroscopy for studying Earth materials at high pressure and temperature}, series = {Journal of analytical atomic spectrometry}, volume = {34}, journal = {Journal of analytical atomic spectrometry}, number = {2}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0267-9477}, doi = {10.1039/c8ja00247a}, pages = {384 -- 393}, year = {2018}, abstract = {X-ray emission and X-ray Raman scattering spectroscopy are powerful tools to investigate the local electronic and atomic structure of high and low Z elements in situ. Notably, these methods can be applied for in situ spectroscopy at high pressure and high temperature using resistively or laser-heated diamond anvil cells in order to achieve thermodynamic conditions which appear in the Earth's interior. We present a setup for combined X-ray emission and X-ray Raman scattering studies at beamline P01 of PETRA III using a portable wavelength-dispersive von Hamos spectrometer together with the permanently installed multiple-analyzer Johann-type spectrometer. The capabilities of this setup are exemplified by investigating the iron spin crossover of siderite FeCO3 up to 49.3 GPa by measuring the Fe M2,3-edge and the Fe Kβ1,3 emission line simultaneously. With this setup, the Fe valence-to-core emission can be detected together with the Kβ1,3 emission line providing complementary information on the sample's electronic structure. By implementing a laser-heating device, we demonstrate the strength of using a von Hamos type spectrometer for spin state mapping at extreme conditions. Finally, we give different examples of low Z elements' absorption edges relevant for application in geoscience that are accessible with the Johann-type XRS spectrometer. With this setup new insights into the spin transition and compression mechanisms of Earth's mantle materials can be obtained of importance for comprehension of the macroscopic physical and chemical properties of the Earth's interior.}, language = {en} } @article{PetitgirardSahleWeisetal.2019, author = {Petitgirard, Sylvian and Sahle, C. J. and Weis, C. and Gilmore, K. and Spiekermann, Georg and Tse, J. S. and Wilke, Max and Cavallari, C. and Cerantola, V and Sternemann, Christian}, title = {Magma properties at deep Earth's conditions from electronic structure of silica}, series = {Geochemical perspectives letters}, volume = {9}, journal = {Geochemical perspectives letters}, publisher = {Association of Geochemistry}, address = {Paris}, issn = {2410-339X}, doi = {10.7185/geochemlet.1902}, pages = {32 -- 37}, year = {2019}, abstract = {SiO(2 )is the main component of silicate melts and thus controls their network structure and physical properties. The compressibility and viscosities of melts at depth are governed by their short range atomic and electronic structure. We measured the O K-edge and the Si L-2,L-3-edge in silica up to 110 GPa using X-ray Raman scattering spectroscopy, and found a striking match to calculated spectra based on structures from molecular dynamic simulations. Between 20 and 27 GPa, Si-[4] species are converted into a mixture of Si-[5] and Si-[6] species and between 60 and 70 GPa, Si-[6] becomes dominant at the expense of Si-[5] with no further increase up to at least 110 GPa. Coordination higher than 6 is only reached beyond 140 GPa, corroborating results from Brillouin scattering. Network modifying elements in silicate melts may shift this change in coordination to lower pressures and thus magmas could be denser than residual solids at the depth of the core-mantle boundary.}, language = {en} } @article{SpiekermannWilkeJahn2016, author = {Spiekermann, Georg and Wilke, Max and Jahn, Sandro}, title = {Structural and dynamical properties of supercritical H2O-SiO2 fluids studied by ab initio molecular dynamics}, series = {Chemical geology : official journal of the European Association for Geochemistry}, volume = {426}, journal = {Chemical geology : official journal of the European Association for Geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2016.01.010}, pages = {85 -- 94}, year = {2016}, abstract = {In this study we report the structure of supercritical H2O-SiO2 fluid composed of 50 mol\% H2O and 50 mol\% SiO2 at 3000 K and 2400 K. investigated by means of ab initio molecular dynamics of models comprising 192 and 96 atoms. The density is set constant to 138 g/cm(3), which yields a pressure of 4.3 GPa at 3000 K and 3.6 GPa at 2400 K. Throughout the trajec[ories, water molecules are formed and dissociated via the network modifying reaction 2 SiOH = SiOSi + H2O The calculation of the reaction constant K- [OH](2)/[H2O][O2-] is carried out on the basis of the experimentally relevant Q ' species notation and agrees well with an extrapolation of experimental data to 3000 K. After quench from 3000 K to 2400 K, the degree of polymerization of the silicate network in the 192-atom models increases noticeably within several tens of picoseconds, accompanied by release of molecular H2O. An unexpected opposite trend is observed in smaller 96-atom models, due to a finite size effect, as several uncorrelated models of 192 and 96 atoms indicate. The temperature-dependent slowing down of the H2O-silica interaction dynamics is described on the basis of the bond autocorrelation function. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{WeisSternemannCerantolaetal.2017, author = {Weis, Christopher and Sternemann, Christian and Cerantola, Valerio and Sahle, Christoph J. and Spiekermann, Georg and Harder, Manuel and Forov, Yury and Kononov, Alexander and Sakrowski, Robin and Yavas, Hasan and Tolan, Metin and Wilke, Max}, title = {Pressure driven spin transition in siderite and magnesiosiderite single crystals}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-16733-3}, pages = {10}, year = {2017}, language = {en} } @misc{SpiekermannHarderGilmoreetal.2019, author = {Spiekermann, Georg and Harder, M. and Gilmore, Keith and Zalden, Peter and Sahle, Christoph J. and Petitgirard, Sylvain and Wilke, Max and Biedermann, Nicole and Weis, Thomas and Morgenroth, Wolfgang and Tse, John S. and Kulik, E. and Nishiyama, Norimasa and Yava{\c{s}}, Hasan and Sternemann, Christian}, title = {Persistent Octahedral Coordination in Amorphous GeO₂ Up to 100 GPa by Kβ'' X-Ray Emission Spectroscopy}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {699}, issn = {1866-8372}, doi = {10.25932/publishup-42775}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427755}, year = {2019}, abstract = {We measure valence-to-core x-ray emission spectra of compressed crystalline GeO₂ up to 56 GPa and of amorphous GeO₂ up to 100 GPa. In a novel approach, we extract the Ge coordination number and mean Ge-O distances from the emission energy and the intensity of the Kβ'' emission line. The spectra of high-pressure polymorphs are calculated using the Bethe-Salpeter equation. Trends observed in the experimental and calculated spectra are found to match only when utilizing an octahedral model. The results reveal persistent octahedral Ge coordination with increasing distortion, similar to the compaction mechanism in the sequence of octahedrally coordinated crystalline GeO₂ high-pressure polymorphs.}, language = {en} } @article{SpiekermannHarderGilmoreetal.2019, author = {Spiekermann, Georg and Harder, M. and Gilmore, Keith and Zalden, Peter and Sahle, Christoph J. and Petitgirard, Sylvain and Wilke, Max and Biedermann, Nicole and Weis, Thomas and Morgenroth, Wolfgang and Tse, John S. and Kulik, E. and Nishiyama, Norimasa and Yava{\c{s}}, Hasan and Sternemann, Christian}, title = {Persistent Octahedral Coordination in Amorphous GeO₂ Up to 100 GPa by Kβ'' X-Ray Emission Spectroscopy}, series = {Physical Review X}, volume = {9}, journal = {Physical Review X}, number = {1}, publisher = {American Physical Society by the American Institute of Physics}, address = {Melville, NY}, issn = {2469-9926}, doi = {10.1103/PhysRevX.9.011025}, pages = {10}, year = {2019}, abstract = {We measure valence-to-core x-ray emission spectra of compressed crystalline GeO₂ up to 56 GPa and of amorphous GeO₂ up to 100 GPa. In a novel approach, we extract the Ge coordination number and mean Ge-O distances from the emission energy and the intensity of the Kβ'' emission line. The spectra of high-pressure polymorphs are calculated using the Bethe-Salpeter equation. Trends observed in the experimental and calculated spectra are found to match only when utilizing an octahedral model. The results reveal persistent octahedral Ge coordination with increasing distortion, similar to the compaction mechanism in the sequence of octahedrally coordinated crystalline GeO₂ high-pressure polymorphs.}, language = {en} }