@article{WetterichSchirrmeisteNazarovaetal.2018, author = {Wetterich, Sebastian and Schirrmeiste, Lutz and Nazarova, Larisa B. and Palagushkina, Olga and Bobrov, Anatoly and Pogosyan, Lilit and Savelieva, Larisa and Syrykh, Liudmila and Matthes, Heidrun and Fritz, Michael and G{\"u}nther, Frank and Opel, Thomas and Meyer, Hanno}, title = {Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia)}, series = {Permafrost and Periglacial Processes}, volume = {29}, journal = {Permafrost and Periglacial Processes}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1045-6740}, doi = {10.1002/ppp.1979}, pages = {182 -- 198}, year = {2018}, abstract = {Ground ice and sedimentary records of a pingo exposure reveal insights into Holocene permafrost, landscape and climate dynamics. Early to mid-Holocene thermokarst lake deposits contain rich floral and faunal paleoassemblages, which indicate lake shrinkage and decreasing summer temperatures (chironomid-based T-July) from 10.5 to 3.5 cal kyr BP with the warmest period between 10.5 and 8 cal kyr BP. Talik refreezing and pingo growth started about 3.5 cal kyr BP after disappearance of the lake. The isotopic composition of the pingo ice (delta O-18 - 17.1 +/- 0.6 parts per thousand, delta D -144.5 +/- 3.4 parts per thousand, slope 5.85, deuterium excess -7.7 +/- 1.5 parts per thousand) point to the initial stage of closed-system freezing captured in the record. A differing isotopic composition within the massive ice body was found (delta O-18 - 21.3 +/- 1.4 parts per thousand, delta D -165 +/- 11.5 parts per thousand, slope 8.13, deuterium excess 4.9 +/- 3.2 parts per thousand), probably related to the infill of dilation cracks by surface water with quasi-meteoric signature. Currently inactive syngenetic ice wedges formed in the thermokarst basin after lake drainage. The pingo preserves traces of permafrost response to climate variations in terms of ground-ice degradation (thermokarst) during the early and mid-Holocene, and aggradation (wedge-ice and pingo-ice growth) during the late Holocene.}, language = {en} } @article{FritzUnkelLenzetal.2018, author = {Fritz, Michael and Unkel, Ingmar and Lenz, Josefine and Gajewski, Konrad and Frenzel, Peter and Paquette, Nathalie and Lantuit, Hugues and K{\"o}rte, Lisa and Wetterich, Sebastian}, title = {Regional environmental change versus local signal preservation in Holocene thermokarst lake sediments}, series = {Journal of paleolimnolog}, volume = {60}, journal = {Journal of paleolimnolog}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-018-0025-0}, pages = {77 -- 96}, year = {2018}, abstract = {Thermokarst lakes cover nearly one fourth of ice-rich permafrost lowlands in the Arctic. Sediments from an athalassic subsaline thermokarst lake on Herschel Island (69°36′N; 139°04′W, Canadian Arctic) were used to understand regional changes in climate and in sediment transport, hydrology, nutrient availability and permafrost disturbance. The sediment record spans the last ~ 11,700 years and the basal date is in good agreement with the Holocene onset of thermokarst initiation in the region. Electrical conductivity in pore water continuously decreases, thus indicating desalinization and continuous increase of lake size and water level. The inc/coh ratio of XRF scans provides a high-resolution organic-carbon proxy which correlates with TOC measurements. XRF-derived Mn/Fe ratios indicate aerobic versus anaerobic conditions which moderate the preservation potential of organic matter in lake sediments. The coexistence of marine, brackish and freshwater ostracods and foraminifera is explained by (1) oligohaline to mesohaline water chemistry of the past lake and (2) redeposition of Pleistocene specimens found within upthrusted marine sediments around the lake. Episodes of catchment disturbance are identified when calcareous fossils and allochthonous material were transported into the lake by thermokarst processes such as active-layer detachments, slumping and erosion of ice-rich shores. The pollen record does not show major variations and the pollen-based climate record does not match well with other summer air temperature reconstructions from this region. Local vegetation patterns in small catchments are strongly linked to morphology and sub-surface permafrost conditions rather than to climate. Multidisciplinary studies can identify the onset and life cycle of thermokarst lakes as they play a crucial role in Arctic freshwater ecosystems and in the global carbon cycle of the past, present and future.}, language = {en} } @article{FritzWolterRudayaetal.2016, author = {Fritz, Michael and Wolter, Juliane and Rudaya, Natalia and Palagushkina, Olga and Nazarova, Larisa B. and Obu, Jaroslav and Rethemeyer, Janet and Lantuit, Hugues and Wetterich, Sebastian}, title = {Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada)}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {147}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.02.008}, pages = {279 -- 297}, year = {2016}, abstract = {Ice-wedge polygon (IWP) peatlands in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from an IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, delta C-13), stable water isotopes (delta O-18, delta D), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUS) correspond to the main stages of deposition (1) in a thermokarst lake (SW : 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions of the IWP field that developed after drainage (SU3: 3120 cal yrs BP to 2012 CE). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatom species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic diatom species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @phdthesis{Wetterich2008, author = {Wetterich, Sebastian}, title = {Freshwater ostracods as bioindicators in Arctic periglacial regions}, address = {Potsdam}, pages = {1990 S.}, year = {2008}, language = {en} } @article{OverduinWestermannYoshikawaetal.2012, author = {Overduin, Pier Paul and Westermann, Sebastian and Yoshikawa, Kenji and Haberlau, Thomas and Romanovsky, Vladimir E. and Wetterich, Sebastian}, title = {Geoelectric observations of the degradation of nearshore submarine permafrost at Barrow (Alaskan Beaufort Sea)}, series = {Journal of geophysical research : Earth surface}, volume = {117}, journal = {Journal of geophysical research : Earth surface}, number = {14}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0148-0227}, doi = {10.1029/2011JF002088}, pages = {9}, year = {2012}, abstract = {Submarine permafrost degradation rates may be determined by a number of interacting processes, including rates of sea level rise and coastal erosion, sea bottom temperature and salinity regimes, geothermal heat flux and heat and mass diffusion within the sediment column. Observations of ice-bearing permafrost in shelf sediments are necessary in order to determine its spatial distribution and to quantify its degradation rate. We tested the use of direct current electrical resistivity to ice-bearing permafrost in Elson Lagoon northeast of Barrow, Alaska (Beaufort Sea). A sharp increase in electrical resistivity was observed in profiles collected perpendicular to and along the coastline and is interpreted to be the boundary between ice-free sediment and underlying ice-bearing submarine permafrost. The depth to the interpreted ice-bearing permafrost increases from <2 m below sea level to over 12 m below sea level with increasing distance from the coastline. The dependence of the saline sediment electrical resistivity on temperature and freezing was measured in the laboratory to provide validation for the field measurements. Electrical resistivity was shown to be effective for detection of shallow ice-bearing permafrost in the coastal zone. Historical coastal retreat rates were combined with the inclination of the top of the ice-bearing permafrost to calculate mean vertical permafrost degradation rates of 1 to 4 cm yr(-1).}, language = {en} } @article{OpelMurtonWetterichetal.2019, author = {Opel, Thomas and Murton, Julian B. and Wetterich, Sebastian and Meyer, Hanno and Ashastina, Kseniia and G{\"u}nther, Frank and Grotheer, Hendrik and Mollenhauer, Gesine and Danilov, Petr P. and Boeskorov, Vasily and Savvinov, Grigoriy N. and Schirrmeister, Lutz}, title = {Past climate and continentality inferred from ice wedges at Batagay Highlands, interior Yakutia}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {15}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-15-1443-2019}, pages = {1443 -- 1461}, year = {2019}, abstract = {Ice wedges in the Yana Highlands of interior Yakutia - the most continental region of the Northern Hemisphere - were investigated to elucidate changes in winter climate and continentality that have taken place since the Middle Pleistocene. The Batagay megaslump exposes ice wedges and composite wedges that were sampled from three cryostratigraphic units: the lower ice complex of likely pre-Marine Isotope Stage (MIS) 6 age, the upper ice complex (Yedoma) and the upper sand unit (both MIS 3 to 2). A terrace of the nearby Adycha River provides a Late Holocene (MIS 1) ice wedge that serves as a modern reference for interpretation. The stable-isotope composition of ice wedges in the MIS 3 upper ice complex at Batagay is more depleted (mean delta O-18 about -35 parts per thousand) than those from 17 other ice-wedge study sites across coastal and central Yakutia. This observation points to lower winter temperatures and therefore higher continentality in the Yana Highlands during MIS 3. Likewise, more depleted isotope values are found in Holocene wedge ice (mean delta O-18 about -29 parts per thousand) compared to other sites in Yakutia. Ice-wedge isotopic signatures of the lower ice complex mean delta O-18 about -33 parts per thousand) and of the MIS 3-2 upper sand unit (mean delta O-18 from about -33 parts per thousand to -30 parts per thousand) are less distinctive regionally. The latter unit preserves traces of fast formation in rapidly accumulating sand sheets and of post-depositional isotopic fractionation.}, language = {en} } @article{PalagushkinaWetterichSchirrmeisteretal.2017, author = {Palagushkina, Olga V. and Wetterich, Sebastian and Schirrmeister, Lutz and Nazarova, Larisa B.}, title = {Modern and fossil diatom assemblages from Bol'shoy Lyakhovsky Island (New Siberian Archipelago, Arctic Siberia)}, series = {Contemporary Problems of Ecology}, volume = {10}, journal = {Contemporary Problems of Ecology}, publisher = {Pleiades Publ.}, address = {New York}, issn = {1995-4255}, doi = {10.1134/S1995425517040060}, pages = {380 -- 394}, year = {2017}, abstract = {This article discusses the results of a taxonomic and ecological investigation of diatoms from polygonal ponds and Quaternary permafrost deposits of Bol'shoy Lyakhovsky Island (New Siberian Archipelago) and the reconstruction of climatic changes on the Island during late Pleistocene/Holocene transition using fossil diatom assemblages from the permafrost deposits. The taxonomic list of diatoms includes 159 diatom species. The main ecological factors that determine the distribution of diatoms in the investigated data set are mean July air temperature, рН, electrical conductivity, water depth, and concentrations of Si4+ and Al3+. An increase in water depth and stable lacustrine conditions in the Lateglacial-Holocene in the ancient thermokarst lake relate to Lateglacial warming before 11860 ± 160 years BP and during the early Holocene between 11210 ± 160 and 7095 ± 60 years BP.}, language = {en} } @article{WetterichRudayaKuznetsovetal.2019, author = {Wetterich, Sebastian and Rudaya, Natalia and Kuznetsov, Vladislav and Maksimov, Fedor and Opel, Thomas and Meyer, Hanno and G{\"u}nther, Frank and Bobrov, Anatoly and Raschke, Elena and Zimmermann, Heike Hildegard and Strauss, Jens and Starikova, Anna and Fuchs, Margret and Schirrmeister, Lutz}, title = {Ice Complex formation on Bol'shoy Lyakhovsky Island (New Siberian Archipelago, East Siberian Arctic) since about 200 ka}, series = {Quaternary research : an interdisciplinary journal}, volume = {92}, journal = {Quaternary research : an interdisciplinary journal}, number = {2}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0033-5894}, doi = {10.1017/qua.2019.6}, pages = {530 -- 548}, year = {2019}, abstract = {Late Quaternary landscapes of unglaciated Beringia were largely shaped by ice-wedge polygon tundra. Ice Complex (IC) strata preserve such ancient polygon formations. Here we report on the Yukagir IC from Bol'shoy Lyakhovsky Island in northeastern Siberia and suggest that new radioisotope disequilibria (230Th/U) dates of the Yukagir IC peat confirm its formation during the Marine Oxygen Isotope Stage (MIS) 7a-c interglacial period. The preservation of the ice-rich Yukagir IC proves its resilience to last interglacial and late glacial-Holocene warming. This study compares the Yukagir IC to IC strata of MIS 5, MIS 3, and MIS 2 ages exposed on Bol'shoy Lyakhovsky Island. Besides high intrasedimental ice content and syngenetic ice wedges intersecting silts, sandy silts, the Yukagir IC is characterized by high organic matter (OM) accumulation and low OM decomposition of a distinctive Drepanocladus moss-peat. The Yukagir IC pollen data reveal grass-shrub-moss tundra indicating rather wet summer conditions similar to modern ones. The stable isotope composition of Yukagir IC wedge ice is similar to those of the MIS 5 and MIS 3 ICs pointing to similar atmospheric moisture generation and transport patterns in winter. IC data from glacial and interglacial periods provide insights into permafrost and climate dynamics since about 200 ka.}, language = {en} } @article{WolterLantuitWetterichetal.2018, author = {Wolter, Juliane and Lantuit, Hugues and Wetterich, Sebastian and Rethemeyer, Janet and Fritz, Michael}, title = {Climatic, geomorphologic and hydrologic perturbations as drivers for mid- to late Holocene development of ice-wedge polygons in the western Canadian Arctic}, series = {Permafrost and Periglacial Processes}, volume = {29}, journal = {Permafrost and Periglacial Processes}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1045-6740}, doi = {10.1002/ppp.1977}, pages = {164 -- 181}, year = {2018}, abstract = {Ice-wedge polygons are widespread periglacial features and influence landscape hydrology and carbon storage. The influence of climate and topography on polygon development is not entirely clear, however, giving high uncertainties to projections of permafrost development. We studied the mid- to late Holocene development of modern ice-wedge polygon sites to explore drivers of change and reasons for long-term stability. We analyzed organic carbon, total nitrogen, stable carbon isotopes, grain size composition and plant macrofossils in six cores from three polygons. We found that ail sites developed from aquatic to wetland conditions. In the mid-Holocene, shallow lakes and partly submerged ice-wedge polygons existed at the studied sites. An erosional hiatus of ca 5000 years followed, and ice-wedge polygons re-initiated within the last millennium. Ice-wedge melt and surface drying during the last century were linked to climatic warming. The influence of climate on ice-wedge polygon development was outweighed by geomorphology during most of the late Holocene. Recent warming, however, caused ice-wedge degradation at all sites. Our study showed that where waterlogged ground was maintained, low-centered polygons persisted for millennia. Ice-wedge melt and increased drainage through geomorphic disturbance, however, triggered conversion into high-centered polygons and may lead to self-enhancing degradation under continued warming.}, language = {en} } @article{SchirrmeisterBobrovRaschkeetal.2018, author = {Schirrmeister, Lutz and Bobrov, Anatoly and Raschke, Elena and Herzschuh, Ulrike and Strauss, Jens and Pestryakova, Luidmila Agafyevna and Wetterich, Sebastian}, title = {Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands}, series = {Arctic, antarctic, and alpine research : an interdisciplinary journal}, volume = {50}, journal = {Arctic, antarctic, and alpine research : an interdisciplinary journal}, number = {1}, publisher = {Institute of Arctic and Alpine Research, University of Colorado}, address = {Boulder}, issn = {1523-0430}, doi = {10.1080/15230430.2018.1462595}, pages = {18}, year = {2018}, abstract = {Ice-wedge polygons are common features of northeastern Siberian lowland periglacial tundra landscapes. To deduce the formation and alternation of ice-wedge polygons in the Kolyma Delta and in the Indigirka Lowland, we studied shallow cores, up to 1.3 m deep, from polygon center and rim locations. The formation of well-developed low-center polygons with elevated rims and wet centers is shown by the beginning of peat accumulation, increased organic matter contents, and changes in vegetation cover from Poaceae-, Alnus-, and Betula-dominated pollen spectra to dominating Cyperaceae and Botryoccocus presence, and Carex and Drepanocladus revolvens macro-fossils. Tecamoebae data support such a change from wetland to open-water conditions in polygon centers by changes from dominating eurybiontic and sphagnobiontic to hydrobiontic species assemblages. The peat accumulation indicates low-center polygon formation and started between 2380 +/- 30 and 1676 +/- 32 years before present (BP) in the Kolyma Delta. We recorded an opposite change from open-water to wetland conditions because of rim degradation and consecutive high-center polygon formation in the Indigirka Lowland between 2144 +/- 33 and 1632 +/- 32 years BP. The late Holocene records of polygon landscape development reveal changes in local hydrology and soil moisture.}, language = {en} }