@book{MeyerPufahlFahlandetal.2013, author = {Meyer, Andreas and Pufahl, Luise and Fahland, Dirk and Weske, Mathias}, title = {Modeling and enacting complex data dependencies in business processes}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-245-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65103}, publisher = {Universit{\"a}t Potsdam}, pages = {40}, year = {2013}, abstract = {Enacting business processes in process engines requires the coverage of control flow, resource assignments, and process data. While the first two aspects are well supported in current process engines, data dependencies need to be added and maintained manually by a process engineer. Thus, this task is error-prone and time-consuming. In this report, we address the problem of modeling processes with complex data dependencies, e.g., m:n relationships, and their automatic enactment from process models. First, we extend BPMN data objects with few annotations to allow data dependency handling as well as data instance differentiation. Second, we introduce a pattern-based approach to derive SQL queries from process models utilizing the above mentioned extensions. Therewith, we allow automatic enactment of data-aware BPMN process models. We implemented our approach for the Activiti process engine to show applicability.}, language = {en} } @article{PolyvyanyyGarciaBanuelosFahlandetal.2014, author = {Polyvyanyy, Artem and Garcia-Banuelos, Luciano and Fahland, Dirk and Weske, Mathias}, title = {Maximal structuring of acyclic process models}, series = {The computer journal : a publication of the British Computer Society}, volume = {57}, journal = {The computer journal : a publication of the British Computer Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0010-4620}, doi = {10.1093/comjnl/bxs126}, pages = {12 -- 35}, year = {2014}, abstract = {This article addresses the transformation of a process model with an arbitrary topology into an equivalent structured process model. In particular, this article studies the subclass of process models that have no equivalent well-structured representation but which, nevertheless, can be partially structured into their maximally-structured representation. The transformations are performed under a behavioral equivalence notion that preserves the observed concurrency of tasks in equivalent process models. The article gives a full characterization of the subclass of acyclic process models that have no equivalent well-structured representation, but do have an equivalent maximally-structured one, as well as proposes a complete structuring method. Together with our previous results, this article completes the solution of the process model structuring problem for the class of acyclic process models.}, language = {en} } @article{MeyerPufahlBatoulisetal.2015, author = {Meyer, Andreas and Pufahl, Luise and Batoulis, Kimon and Fahland, Dirk and Weske, Mathias}, title = {Automating data exchange in process choreographies}, series = {Information systems}, volume = {53}, journal = {Information systems}, publisher = {Elsevier}, address = {Oxford}, issn = {0306-4379}, doi = {10.1016/j.is.2015.03.008}, pages = {296 -- 329}, year = {2015}, abstract = {Communication between organizations is formalized as process choreographies in daily business. While the correct ordering of exchanged messages can be modeled and enacted with current choreography techniques, no approach exists to describe and automate the exchange of data between processes in a choreography using messages. This paper describes an entirely model-driven approach for BPMN introducing a few concepts that suffice to model data retrieval, data transformation, message exchange, and correlation four aspects of data exchange. For automation, this work utilizes a recent concept to enact data dependencies in internal processes. We present a modeling guideline to derive local process models from a given choreography; their operational semantics allows to correctly enact the entire choreography from the derived models only including the exchange of data. Targeting on successful interactions, we discuss means to ensure correct process choreography modeling. Finally, we implemented our approach by extending the camunda BPM platform with our approach and show its feasibility by realizing all service interaction patterns using only model-based concepts. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} }