@book{MeyerWeske2014, author = {Meyer, Andreas and Weske, Mathias}, title = {Weak conformance between process models and synchronized object life cycles}, number = {91}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-303-9}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71722}, publisher = {Universit{\"a}t Potsdam}, pages = {31}, year = {2014}, abstract = {Process models specify behavioral execution constraints between activities as well as between activities and data objects. A data object is characterized by its states and state transitions represented as object life cycle. For process execution, all behavioral execution constraints must be correct. Correctness can be verified via soundness checking which currently only considers control flow information. For data correctness, conformance between a process model and its object life cycles is checked. Current approaches abstract from dependencies between multiple data objects and require fully specified process models although, in real-world process repositories, often underspecified models are found. Coping with these issues, we introduce the concept of synchronized object life cycles and we define a mapping of data constraints of a process model to Petri nets extending an existing mapping. Further, we apply the notion of weak conformance to process models to tell whether each time an activity needs to access a data object in a particular state, it is guaranteed that the data object is in or can reach the expected state. Then, we introduce an algorithm for an integrated verification of control flow correctness and weak data conformance using soundness checking.}, language = {en} } @article{AwadWeidlichWeske2011, author = {Awad, Ahmed Mahmoud Hany Aly and Weidlich, Matthias and Weske, Mathias}, title = {Visually specifying compliance rules and explaining their violations for business processes}, series = {Journal of visual languages and computing}, volume = {22}, journal = {Journal of visual languages and computing}, number = {1}, publisher = {Elsevier}, address = {London}, issn = {1045-926X}, doi = {10.1016/j.jvlc.2010.11.002}, pages = {30 -- 55}, year = {2011}, abstract = {A business process is a set of steps designed to be executed in a certain order to achieve a business value. Such processes are often driven by and documented using process models. Nowadays, process models are also applied to drive process execution. Thus, correctness of business process models is a must. Much of the work has been devoted to check general, domain-independent correctness criteria, such as soundness. However, business processes must also adhere to and show compliance with various regulations and constraints, the so-called compliance requirements. These are domain-dependent requirements. In many situations, verifying compliance on a model level is of great value, since violations can be resolved in an early stage prior to execution. However, this calls for using formal verification techniques, e.g., model checking, that are too complex for business experts to apply. In this paper, we utilize a visual language. BPMN-Q to express compliance requirements visually in a way similar to that used by business experts to build process models. Still, using a pattern based approach, each BPMN-Qgraph has a formal temporal logic expression in computational tree logic (CTL). Moreover, the user is able to express constraints, i.e., compliance rules, regarding control flow and data flow aspects. In order to provide valuable feedback to a user in case of violations, we depend on temporal logic querying approaches as well as BPMN-Q to visually highlight paths in a process model whose execution causes violations.}, language = {en} } @book{PolyvyanyySmirnovWeske2008, author = {Polyvyanyy, Artem and Smirnov, Sergey and Weske, Mathias}, title = {The triconnected abstraction of process models}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-940793-65-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32847}, publisher = {Universit{\"a}t Potsdam}, pages = {17}, year = {2008}, abstract = {Contents: Artem Polyvanny, Sergey Smirnow, and Mathias Weske The Triconnected Abstraction of Process Models 1 Introduction 2 Business Process Model Abstraction 3 Preliminaries 4 Triconnected Decomposition 4.1 Basic Approach for Process Component Discovery 4.2 SPQR-Tree Decomposition 4.3 SPQR-Tree Fragments in the Context of Process Models 5 Triconnected Abstraction 5.1 Abstraction Rules 5.2 Abstraction Algorithm 6 Related Work and Conclusions}, language = {en} } @book{SmirnovZamaniFarahaniWeske2011, author = {Smirnov, Sergey and Zamani Farahani, Armin and Weske, Mathias}, title = {State propagation in abstracted business processes}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-130-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51480}, publisher = {Universit{\"a}t Potsdam}, pages = {16}, year = {2011}, abstract = {Business process models are abstractions of concrete operational procedures that occur in the daily business of organizations. To cope with the complexity of these models, business process model abstraction has been introduced recently. Its goal is to derive from a detailed process model several abstract models that provide a high-level understanding of the process. While techniques for constructing abstract models are reported in the literature, little is known about the relationships between process instances and abstract models. In this paper we show how the state of an abstract activity can be calculated from the states of related, detailed process activities as they happen. The approach uses activity state propagation. With state uniqueness and state transition correctness we introduce formal properties that improve the understanding of state propagation. Algorithms to check these properties are devised. Finally, we use behavioral profiles to identify and classify behavioral inconsistencies in abstract process models that might occur, once activity state propagation is used.}, language = {en} } @unpublished{WeskeYangMaglio2012, author = {Weske, Mathias and Yang, Jian and Maglio, Paul P.}, title = {Special issue service oriented computing (ICSOC) guest editors' introduction}, series = {International journal of cooperative information systems}, volume = {21}, journal = {International journal of cooperative information systems}, number = {1}, publisher = {World Scientific}, address = {Singapore}, issn = {0218-8430}, doi = {10.1142/S0218843012020017}, pages = {1 -- 2}, year = {2012}, language = {en} } @book{RoggeSoltiMansvanderAalstetal.2013, author = {Rogge-Solti, Andreas and Mans, Ronny S. and van der Aalst, Wil M. P. and Weske, Mathias}, title = {Repairing event logs using stochastic process models}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-258-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66797}, publisher = {Universit{\"a}t Potsdam}, pages = {19}, year = {2013}, abstract = {Companies strive to improve their business processes in order to remain competitive. Process mining aims to infer meaningful insights from process-related data and attracted the attention of practitioners, tool-vendors, and researchers in recent years. Traditionally, event logs are assumed to describe the as-is situation. But this is not necessarily the case in environments where logging may be compromised due to manual logging. For example, hospital staff may need to manually enter information regarding the patient's treatment. As a result, events or timestamps may be missing or incorrect. In this paper, we make use of process knowledge captured in process models, and provide a method to repair missing events in the logs. This way, we facilitate analysis of incomplete logs. We realize the repair by combining stochastic Petri nets, alignments, and Bayesian networks. We evaluate the results using both synthetic data and real event data from a Dutch hospital.}, language = {en} } @book{PolyvyanyySmirnovWeske2008, author = {Polyvyanyy, Artem and Smirnov, Sergey and Weske, Mathias}, title = {Reducing the complexity of large EPCs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32959}, publisher = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Inhalt: 1 Introduction 2 Motivation and Goal 3 Fundamentals 4 Elementary Abstractions 5 Real World Example 6 Conclusions}, language = {en} } @article{KunzeWeidlichWeske2015, author = {Kunze, Matthias and Weidlich, Matthias and Weske, Mathias}, title = {Querying process models by behavior inclusion}, series = {Software and systems modeling}, volume = {14}, journal = {Software and systems modeling}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {1619-1366}, doi = {10.1007/s10270-013-0389-6}, pages = {1105 -- 1125}, year = {2015}, abstract = {Business processes are vital to managing organizations as they sustain a company's competitiveness. Consequently, these organizations maintain collections of hundreds or thousands of process models for streamlining working procedures and facilitating process implementation. Yet, the management of large process model collections requires effective searching capabilities. Recent research focused on similarity search of process models, but querying process models is still a largely open topic. This article presents an approach to querying process models that takes a process example as input and discovers all models that allow replaying the behavior of the query. To this end, we provide a notion of behavioral inclusion that is based on trace semantics and abstraction. Additional to deciding a match, a closeness score is provided that describes how well the behavior of the query is represented in the model and can be used for ranking. The article introduces the formal foundations of the approach and shows how they are applied to querying large process model collections. An experimental evaluation has been conducted that confirms the suitability of the solution as well as its applicability and scalability in practice.}, language = {en} } @article{WeidlichMendlingWeske2012, author = {Weidlich, Matthias and Mendling, Jan and Weske, Mathias}, title = {Propagating changes between aligned process models}, series = {The journal of systems and software}, volume = {85}, journal = {The journal of systems and software}, number = {8}, publisher = {Elsevier}, address = {New York}, issn = {0164-1212}, doi = {10.1016/j.jss.2012.02.044}, pages = {1885 -- 1898}, year = {2012}, abstract = {There is a wide variety of drivers for business process modelling initiatives, reaching from organisational redesign to the development of information systems. Consequently, a common business process is often captured in multiple models that overlap in content due to serving different purposes. Business process management aims at flexible adaptation to changing business needs. Hence, changes of business processes occur frequently and have to be incorporated in the respective process models. Once a process model is changed, related process models have to be updated accordingly, despite the fact that those process models may only be loosely coupled. In this article, we introduce an approach that supports change propagation between related process models. Given a change in one process model, we leverage the behavioural abstraction of behavioural profiles for corresponding activities in order to determine a change region in another model. Our approach is able to cope with changes in pairs of models that are not related by hierarchical refinement and show behavioural inconsistencies. We evaluate the applicability of our approach with two real-world process model collections. To this end, we either deduce change operations from different model revisions or rely on synthetic change operations.}, language = {en} } @article{BanoMichaelRumpeetal.2022, author = {Bano, Dorina and Michael, Judith and Rumpe, Bernhard and Varga, Simon and Weske, Mathias}, title = {Process-aware digital twin cockpit synthesis from event logs}, series = {Journal of computer languages}, volume = {70}, journal = {Journal of computer languages}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {2590-1184}, doi = {10.1016/j.cola.2022.101121}, pages = {19}, year = {2022}, abstract = {The engineering of digital twins and their user interaction parts with explicated processes, namely processaware digital twin cockpits (PADTCs), is challenging due to the complexity of the systems and the need for information from different disciplines within the engineering process. Therefore, it is interesting to investigate how to facilitate their engineering by using already existing data, namely event logs, and reducing the number of manual steps for their engineering. Current research lacks systematic, automated approaches to derive process-aware digital twin cockpits even though some helpful techniques already exist in the areas of process mining and software engineering. Within this paper, we present a low-code development approach that reduces the amount of hand-written code needed and uses process mining techniques to derive PADTCs. We describe what models could be derived from event log data, which generative steps are needed for the engineering of PADTCs, and how process mining could be incorporated into the resulting application. This process is evaluated using the MIMIC III dataset for the creation of a PADTC prototype for an automated hospital transportation system. This approach can be used for early prototyping of PADTCs as it needs no hand-written code in the first place, but it still allows for the iterative evolvement of the application. This empowers domain experts to create their PADTC prototypes.}, language = {en} } @article{WeidlichPolyvyanyyDesaietal.2011, author = {Weidlich, Matthias and Polyvyanyy, Artem and Desai, Nirmit and Mendling, Jan and Weske, Mathias}, title = {Process compliance analysis based on behavioural profiles}, series = {Information systems}, volume = {36}, journal = {Information systems}, number = {7}, publisher = {Elsevier}, address = {Oxford}, issn = {0306-4379}, doi = {10.1016/j.is.2011.04.002}, pages = {1009 -- 1025}, year = {2011}, abstract = {Process compliance measurement is getting increasing attention in companies due to stricter legal requirements and market pressure for operational excellence. In order to judge on compliance of the business processing, the degree of behavioural deviation of a case, i.e., an observed execution sequence, is quantified with respect to a process model (referred to as fitness, or recall). Recently, different compliance measures have been proposed. Still, nearly all of them are grounded on state-based techniques and the trace equivalence criterion, in particular. As a consequence, these approaches have to deal with the state explosion problem. In this paper, we argue that a behavioural abstraction may be leveraged to measure the compliance of a process log - a collection of cases. To this end, we utilise causal behavioural profiles that capture the behavioural characteristics of process models and cases, and can be computed efficiently. We propose different compliance measures based on these profiles, discuss the impact of noise in process logs on our measures, and show how diagnostic information on non-compliance is derived. As a validation, we report on findings of applying our approach in a case study with an international service provider.}, language = {en} } @book{MeinelPlattnerDoellneretal.2014, author = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger and Baudisch, Patrick}, title = {Proceedings of the 7th Ph.D. Retreat of the HPI Research School on Service-oriented Systems Engineering}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-273-5}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63490}, publisher = {Universit{\"a}t Potsdam}, pages = {ii, 218}, year = {2014}, abstract = {Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Commonly used technologies, such as J2EE and .NET, form de facto standards for the realization of complex distributed systems. Evolution of component systems has lead to web services and service-based architectures. This has been manifested in a multitude of industry standards and initiatives such as XML, WSDL UDDI, SOAP, etc. All these achievements lead to a new and promising paradigm in IT systems engineering which proposes to design complex software solutions as collaboration of contractually defined software services. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the Research Scholl, this technical report covers a wide range of research topics. These include but are not limited to: Self-Adaptive Service-Oriented Systems, Operating System Support for Service-Oriented Systems, Architecture and Modeling of Service-Oriented Systems, Adaptive Process Management, Services Composition and Workflow Planning, Security Engineering of Service-Based IT Systems, Quantitative Analysis and Optimization of Service-Oriented Systems, Service-Oriented Systems in 3D Computer Graphics sowie Service-Oriented Geoinformatics.}, language = {en} } @article{RoggeSoltiWeske2015, author = {Rogge-Solti, Andreas and Weske, Mathias}, title = {Prediction of business process durations using non-Markovian stochastic Petri nets}, series = {Information systems}, volume = {54}, journal = {Information systems}, publisher = {Elsevier}, address = {Oxford}, issn = {0306-4379}, doi = {10.1016/j.is.2015.04.004}, pages = {1 -- 14}, year = {2015}, abstract = {Companies need to efficiently manage their business processes to deliver products and services in time. Therefore, they monitor the progress of individual cases to be able to timely detect undesired deviations and to react accordingly. For example, companies can decide to speed up process execution by raising alerts or by using additional resources, which increases the chance that a certain deadline or service level agreement can be met. Central to such process control is accurate prediction of the remaining time of a case and the estimation of the risk of missing a deadline. To achieve this goal, we use a specific kind of stochastic Petri nets that can capture arbitrary duration distributions. Thereby, we are able to achieve higher prediction accuracy than related approaches. Further, we evaluate the approach in comparison to state of the art approaches and show the potential of exploiting a so far untapped source of information: the elapsed time since the last observed event. Real-world case studies in the financial and logistics domain serve to illustrate and evaluate the approach presented. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{WeidlichZiekowGaletal.2014, author = {Weidlich, Matthias and Ziekow, Holger and Gal, Avigdor and Mendling, Jan and Weske, Mathias}, title = {Optimizing event pattern matching using business process models}, series = {IEEE transactions on knowledge and data engineering}, volume = {26}, journal = {IEEE transactions on knowledge and data engineering}, number = {11}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Los Alamitos}, issn = {1041-4347}, doi = {10.1109/TKDE.2014.2302306}, pages = {2759 -- 2773}, year = {2014}, abstract = {A growing number of enterprises use complex event processing for monitoring and controlling their operations, while business process models are used to document working procedures. In this work, we propose a comprehensive method for complex event processing optimization using business process models. Our proposed method is based on the extraction of behaviorial constraints that are used, in turn, to rewrite patterns for event detection, and select and transform execution plans. We offer a set of rewriting rules that is shown to be complete with respect to the all, seq, and any patterns. The effectiveness of our method is demonstrated in an experimental evaluation with a large number of processes from an insurance company. We illustrate that the proposed optimization leads to significant savings in query processing. By integrating the optimization in state-of-the-art systems for event pattern matching, we demonstrate that these savings materialize in different technical infrastructures and can be combined with existing optimization techniques.}, language = {en} } @book{MeyerPufahlFahlandetal.2013, author = {Meyer, Andreas and Pufahl, Luise and Fahland, Dirk and Weske, Mathias}, title = {Modeling and enacting complex data dependencies in business processes}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-245-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65103}, publisher = {Universit{\"a}t Potsdam}, pages = {40}, year = {2013}, abstract = {Enacting business processes in process engines requires the coverage of control flow, resource assignments, and process data. While the first two aspects are well supported in current process engines, data dependencies need to be added and maintained manually by a process engineer. Thus, this task is error-prone and time-consuming. In this report, we address the problem of modeling processes with complex data dependencies, e.g., m:n relationships, and their automatic enactment from process models. First, we extend BPMN data objects with few annotations to allow data dependency handling as well as data instance differentiation. Second, we introduce a pattern-based approach to derive SQL queries from process models utilizing the above mentioned extensions. Therewith, we allow automatic enactment of data-aware BPMN process models. We implemented our approach for the Activiti process engine to show applicability.}, language = {en} } @article{PolyvyanyyGarciaBanuelosFahlandetal.2014, author = {Polyvyanyy, Artem and Garcia-Banuelos, Luciano and Fahland, Dirk and Weske, Mathias}, title = {Maximal structuring of acyclic process models}, series = {The computer journal : a publication of the British Computer Society}, volume = {57}, journal = {The computer journal : a publication of the British Computer Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0010-4620}, doi = {10.1093/comjnl/bxs126}, pages = {12 -- 35}, year = {2014}, abstract = {This article addresses the transformation of a process model with an arbitrary topology into an equivalent structured process model. In particular, this article studies the subclass of process models that have no equivalent well-structured representation but which, nevertheless, can be partially structured into their maximally-structured representation. The transformations are performed under a behavioral equivalence notion that preserves the observed concurrency of tasks in equivalent process models. The article gives a full characterization of the subclass of acyclic process models that have no equivalent well-structured representation, but do have an equivalent maximally-structured one, as well as proposes a complete structuring method. Together with our previous results, this article completes the solution of the process model structuring problem for the class of acyclic process models.}, language = {en} } @article{DeckerWeske2011, author = {Decker, Gero and Weske, Mathias}, title = {Interaction-centric modeling of process choreographies}, series = {Information systems}, volume = {36}, journal = {Information systems}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0306-4379}, doi = {10.1016/j.is.2010.06.005}, pages = {292 -- 312}, year = {2011}, abstract = {With the rise of electronic integration between organizations, the need for a precise specification of interaction behavior increases. Information systems, replacing interaction previously carried out by humans via phone, faxes and emails, require a precise specification for handling all possible situations. Such interaction behavior is described in process choreographies. While many proposals for choreography languages have already been made, most of them fall into the category of interconnection models, where the observable behavior of the different partners is described and then related via message flow. As this article will show, this modeling approach fails to support fundamental design principles of choreographies and typically leads to modeling errors. This motivates an alternative modeling style, namely interaction modeling, for overcoming these limitations. While the main concepts are independent of a concrete modeling language, iBPMN is introduced as novel interaction modeling language. Formal execution semantics are provided and a comprehensive toolset implementing the approach is presented.}, language = {en} } @article{DeckerKoppLeymannetal.2009, author = {Decker, Gero and Kopp, Oliver and Leymann, Frank and Weske, Mathias}, title = {Interacting services : from specification to execution}, issn = {0169-023X}, doi = {10.1016/j.datak.2009.04.003}, year = {2009}, abstract = {Interacting services play a key role to realize business process integration among different business partners by means of electronic message exchange. In order to provide seamless integration of these services, the messages exchanged as well as their dependencies must be well-defined. Service choreographies are a means to describe the allowed conversations. This article presents a requirements framework for service choreography languages, along which existing choreography languages are assessed. The requirements framework provides the basis for introducing the language BPEL4Chor, which extends the industry standard WS-BPEL with choreography-specific concepts. A validation is provided and integration with executable service orchestrations is discussed.}, language = {en} } @article{HerzbergMeyerWeske2015, author = {Herzberg, Nico and Meyer, Andreas and Weske, Mathias}, title = {Improving business process intelligence by observing object state transitions}, series = {Data \& knowledge engineering}, volume = {98}, journal = {Data \& knowledge engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-023X}, doi = {10.1016/j.datak.2015.07.008}, pages = {144 -- 164}, year = {2015}, abstract = {During the execution of business processes several events happen that are recorded in the company's information systems. These events deliver insights into process executions so that process monitoring and analysis can be performed resulting, for instance, in prediction of upcoming process steps or the analysis of the run time of single steps. While event capturing is trivial when a process engine with integrated logging capabilities is used, manual process execution environments do not provide automatic logging of events, so that typically external devices, like bar code scanners, have to be used. As experience shows, these manual steps are error-prone and induce additional work. Therefore, we use object state transitions as additional monitoring information, so-called object state transition events. Based on these object state transition events, we reason about the enablement and termination of activities and provide the basis for process monitoring and analysis in terms of a large event log. In this paper, we present the concept to utilize information from these object state transition events for capturing process progress. Furthermore, we discuss a methodology to create the required design time artifacts that then are used for monitoring at run time. In a proof-of-concept implementation, we show how the design time and run time side work and prove applicability of the introduced concept of object state transition events. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{HaarmannHolfterPufahletal.2021, author = {Haarmann, Stephan and Holfter, Adrian and Pufahl, Luise and Weske, Mathias}, title = {Formal framework for checking compliance of data-driven case management}, series = {Journal on data semantics : JoDS}, volume = {10}, journal = {Journal on data semantics : JoDS}, number = {1-2}, publisher = {Springer}, address = {Heidelberg}, issn = {1861-2032}, doi = {10.1007/s13740-021-00120-3}, pages = {143 -- 163}, year = {2021}, abstract = {Business processes are often specified in descriptive or normative models. Both types of models should adhere to internal and external regulations, such as company guidelines or laws. Employing compliance checking techniques, it is possible to verify process models against rules. While traditionally compliance checking focuses on well-structured processes, we address case management scenarios. In case management, knowledge workers drive multi-variant and adaptive processes. Our contribution is based on the fragment-based case management approach, which splits a process into a set of fragments. The fragments are synchronized through shared data but can, otherwise, be dynamically instantiated and executed. We formalize case models using Petri nets. We demonstrate the formalization for design-time and run-time compliance checking and present a proof-of-concept implementation. The application of the implemented compliance checking approach to a use case exemplifies its effectiveness while designing a case model. The empirical evaluation on a set of case models for measuring the performance of the approach shows that rules can often be checked in less than a second.}, language = {en} }