@misc{deVeraAlawiBackhausetal.2019, author = {de Vera, Jean-Pierre Paul and Alawi, Mashal and Backhaus, Theresa and Baque, Mickael and Billi, Daniela and Boettger, Ute and Berger, Thomas and Bohmeier, Maria and Cockell, Charles and Demets, Rene and de la Torre Noetzel, Rosa and Edwards, Howell and Elsaesser, Andreas and Fagliarone, Claudia and Fiedler, Annelie and Foing, Bernard and Foucher, Frederic and Fritz, J{\"o}rg and Hanke, Franziska and Herzog, Thomas and Horneck, Gerda and H{\"u}bers, Heinz-Wilhelm and Huwe, Bj{\"o}rn and Joshi, Jasmin Radha and Kozyrovska, Natalia and Kruchten, Martha and Lasch, Peter and Lee, Natuschka and Leuko, Stefan and Leya, Thomas and Lorek, Andreas and Martinez-Frias, Jesus and Meessen, Joachim and Moritz, Sophie and Moeller, Ralf and Olsson-Francis, Karen and Onofri, Silvano and Ott, Sieglinde and Pacelli, Claudia and Podolich, Olga and Rabbow, Elke and Reitz, G{\"u}nther and Rettberg, Petra and Reva, Oleg and Rothschild, Lynn and Garcia Sancho, Leo and Schulze-Makuch, Dirk and Selbmann, Laura and Serrano, Paloma and Szewzyk, Ulrich and Verseux, Cyprien and Wadsworth, Jennifer and Wagner, Dirk and Westall, Frances and Wolter, David and Zucconi, Laura}, title = {Limits of life and the habitability of Mars}, series = {Astrobiology}, volume = {19}, journal = {Astrobiology}, number = {2}, publisher = {Liebert}, address = {New Rochelle}, issn = {1531-1074}, doi = {10.1089/ast.2018.1897}, pages = {145 -- 157}, year = {2019}, abstract = {BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.}, language = {en} } @article{SchirmackBoehmBraueretal.2014, author = {Schirmack, Janosch and Boehm, Michael and Brauer, Chris and L{\"o}hmannsr{\"o}ben, Hans-Gerd and de Vera, Jean-Pierre Paul and Moehlmann, Diedrich and Wagner, Dirk}, title = {Laser spectroscopic real time measurements of methanogenic activity under simulated Martian subsurface analog conditions}, series = {Planetary and space science}, volume = {98}, journal = {Planetary and space science}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2013.08.019}, pages = {198 -- 204}, year = {2014}, abstract = {On Earth, chemolithoautothrophic and anaerobic microorganisms such as methanogenic archaea are regarded as model organisms for possible subsurface life on Mars. For this reason, the methanogenic strain Methanosarcina soligelidi (formerly called Methanosarcina spec. SMA-21), isolated from permafrost-affected soil in northeast Siberia, has been tested under Martian thermo-physical conditions. In previous studies under simulated Martian conditions, high survival rates of these microorganisms were observed. In our study we present a method to measure methane production as a first attempt to study metabolic activity of methanogenic archaea during simulated conditions approaching conditions of Mars-like environments. To determine methanogenic activity, a measurement technique which is capable to measure the produced methane concentration with high precision and with high temporal resolution is needed. Although there are several methods to detect methane, only a few fulfill all the needed requirements to work within simulated extraterrestrial environments. We have chosen laser spectroscopy, which is a non-destructive technique that measures the methane concentration without sample taking and also can be run continuously. In our simulation, we detected methane production at temperatures down to -5 degrees C, which would be found on Mars either temporarily in the shallow subsurface or continually in the deep subsurface. The pressure of 50 kPa which we used in our experiments, corresponds to the expected pressure in the Martian near subsurface. Our new device proved to be fully functional and the results indicate that the possible existence of methanogenic archaea in Martian subsurface habitats cannot be ruled out. (C) 2013 Published by Elsevier Ltd.}, language = {en} } @article{deVeraBoettgerdelaTorreNoetzeletal.2012, author = {de Vera, Jean-Pierre Paul and B{\"o}ttger, Ute and de la Torre N{\"o}tzel, Rosa and Sanchez, Francisco J. and Grunow, Dana and Schmitz, Nicole and Lange, Caroline and H{\"u}bers, Heinz-Wilhelm and Billi, Daniela and Baque, Mickael and Rettberg, Petra and Rabbow, Elke and Reitz, G{\"u}nther and Berger, Thomas and M{\"o}ller, Ralf and Bohmeier, Maria and Horneck, Gerda and Westall, Frances and J{\"a}nchen, Jochen and Fritz, J{\"o}rg and Meyer, Cornelia and Onofri, Silvano and Selbmann, Laura and Zucconi, Laura and Kozyrovska, Natalia and Leya, Thomas and Foing, Bernard and Demets, Rene and Cockell, Charles S. and Bryce, Casey and Wagner, Dirk and Serrano, Paloma and Edwards, Howell G. M. and Joshi, Jasmin Radha and Huwe, Bj{\"o}rn and Ehrenfreund, Pascale and Elsaesser, Andreas and Ott, Sieglinde and Meessen, Joachim and Feyh, Nina and Szewzyk, Ulrich and Jaumann, Ralf and Spohn, Tilman}, title = {Supporting Mars exploration BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology}, series = {Planetary and space science}, volume = {74}, journal = {Planetary and space science}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2012.06.010}, pages = {103 -- 110}, year = {2012}, abstract = {The Low Earth Orbit (LEO) experiment Biology and Mars Experiment (BIOMEX) is an interdisciplinary and international space research project selected by ESA. The experiment will be accommodated on the space exposure facility EXPOSE-R2 on the International Space Station (ISS) and is foreseen to be launched in 2013. The prime objective of BIOMEX is to measure to what extent biomolecules, such as pigments and cellular components, are resistant to and able to maintain their stability under space and Mars-like conditions. The results of BIOMEX will be relevant for space proven biosignature definition and for building a biosignature data base (e.g. the proposed creation of an international Raman library). The library will be highly relevant for future space missions such as the search for life on Mars. The secondary scientific objective is to analyze to what extent terrestrial extremophiles are able to survive in space and to determine which interactions between biological samples and selected minerals (including terrestrial, Moon- and Mars analogs) can be observed under space and Mars-like conditions. In this context, the Moon will be an additional platform for performing similar experiments with negligible magnetic shielding and higher solar and galactic irradiation compared to LEO. Using the Moon as an additional astrobiological exposure platform to complement ongoing astrobiological LEO investigations could thus enhance the chances of detecting organic traces of life on Mars. We present a lunar lander mission with two related objectives: a lunar lander equipped with Raman and PanCam instruments which can analyze the lunar surface and survey an astrobiological exposure platform. This dual use of testing mission technology together with geo- and astrobiological analyses will significantly increase the science return, and support the human preparation objectives. It will provide knowledge about the Moon's surface itself and, in addition, monitor the stability of life-markers, such as cells, cell components and pigments, in an extraterrestrial environment with much closer radiation properties to the surface of Mars. The combination of a Raman data base of these data together with data from LEO and space simulation experiments, will lead to further progress on the analysis and interpretation of data that we will obtain from future Moon and Mars exploration missions.}, language = {en} } @article{SerranoAlawideVeraetal.2019, author = {Serrano, Paloma and Alawi, Mashal and de Vera, Jean-Pierre Paul and Wagner, Dirk}, title = {Response of Methanogenic Archaea from Siberian Permafrost and Non-permafrost Environments to Simulated Mars-like Desiccation and the Presence of Perchlorate}, series = {Astrobiology}, volume = {19}, journal = {Astrobiology}, number = {2}, publisher = {Liebert}, address = {New Rochelle}, issn = {1531-1074}, doi = {10.1089/ast.2018.1877}, pages = {197 -- 208}, year = {2019}, abstract = {Numerous preflight investigations were necessary prior to the exposure experiment BIOMEX on the International Space Station to test the basic potential of selected microorganisms to resist or even to be active under Mars-like conditions. In this study, methanogenic archaea, which are anaerobic chemolithotrophic microorganisms whose lifestyle would allow metabolism under the conditions on early and recent Mars, were analyzed. Some strains from Siberian permafrost environments have shown a particular resistance. In this investigation, we analyzed the response of three permafrost strains (Methanosarcina soligelidi SMA-21, Candidatus Methanosarcina SMA-17, Candidatus Methanobacterium SMA-27) and two related strains from non-permafrost environments (Methanosarcina mazei, Methanosarcina barkeri) to desiccation conditions (-80 degrees C for 315 days, martian regolith analog simulants S-MRS and P-MRS, a 128-day period of simulated Mars-like atmosphere). Exposure of the different methanogenic strains to increasing concentrations of magnesium perchlorate allowed for the study of their metabolic shutdown in a Mars-relevant perchlorate environment. Survival and metabolic recovery were analyzed by quantitative PCR, gas chromatography, and a new DNA-extraction method from viable cells embedded in S-MRS and P-MRS. All strains survived the two Mars-like desiccating scenarios and recovered to different extents. The permafrost strain SMA-27 showed an increased methanogenic activity by at least 10-fold after deep-freezing conditions. The methanogenic rates of all strains did not decrease significantly after 128 days S-MRS exposure, except for SMA-27, which decreased 10-fold. The activity of strains SMA-17 and SMA-27 decreased after 16 and 60 days P-MRS exposure. Non-permafrost strains showed constant survival and methane production when exposed to both desiccating scenarios. All strains showed unaltered methane production when exposed to the perchlorate concentration reported at the Phoenix landing site (2.4 mM) or even higher concentrations. We conclude that methanogens from (non-)permafrost environments are suitable candidates for potential life in the martian subsurface and therefore are worthy of study after space exposure experiments that approach Mars-like surface conditions.}, language = {en} }