@article{vonWebskyHasanReichetzederetal.2018, author = {von Websky, Karoline and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Reichetzeder, Christoph and Tsuprykov, Oleg and Hocher, Berthold}, title = {Impact of vitamin D on pregnancy-related disorders and on offspring outcome}, series = {The Journal of Steroid Biochemistry and Molecular Biology}, volume = {180}, journal = {The Journal of Steroid Biochemistry and Molecular Biology}, publisher = {Elsevier}, address = {Oxford}, issn = {0960-0760}, doi = {10.1016/j.jsbmb.2017.11.008}, pages = {51 -- 64}, year = {2018}, abstract = {Observational studies from all over the world continue to find high prevalence rates of vitamin D insufficiency and deficiency in many populations, including pregnant women. Beyond its classical function as a regulator of calcium and phosphate metabolism, vitamin D elicits numerous effects in the human body. Current evidence highlights a vital role of vitamin D in mammalian gestation. During pregnancy, adaptations in maternal vitamin D metabolism lead to a physiologic increase of vitamin D levels, mainly because of an increased renal production, although other potential sources like the placenta are being discussed. A sufficient supply of mother and child with calcium and vitamin D during pregnancy ensures a healthy bone development of the fetus, whereas lack of either of these nutrients can lead to the development of rickets in the child. Moreover, vitamin D insufficiency during pregnancy has consistently been associated with adverse maternal and neonatal pregnancy outcomes. In multitudinous studies, low maternal vitamin D status was associated with a higher risk for pre-eclampsia, gestational diabetes mellitus and other gestational diseases. Likewise, several negative consequences for the fetus have been reported, including fetal growth restriction, increased risk of preterm birth and a changed susceptibility for later-life diseases. However, study results are diverging and causality has not been proven so far. Meta-analyses on the relationship between maternal vitamin D status and pregnancy outcomes revealed a wide heterogeneity of studied populations and the applied methodology in vitamin D assessment. Until today, clinical guidelines for supplementation cannot be based on high-quality evidence and it is not clear if the required intake for pregnant women differs from non-pregnant women. Long-term safety data of vitamin D supplementation in pregnant women has not been established and overdosing of vitamin D might have unfavorable effects, especially in mothers and newborns with mutations of genes involved in vitamin D metabolism. Reliable data from large observational and interventional randomized control trials are urgently needed as a basis for any detailed and safe recommendations for supplementation in the general population and, most importantly, in pregnant women. This is of utmost importance, as ensuring a sufficient vitamin D-supply of mother and child implies a great potential for the prevention of birth complications and development of diseases.}, language = {en} }