@inproceedings{FrombachRancanFleigeetal.2015, author = {Frombach, Janna and Rancan, Fiorenza and Fleige, Emanuel and Haag, Rainer and Schumacher, Frank and Kleuser, Burkhard and Yamamoto, Kenji and R{\"u}hl, Eckart and Blume-Peytavi, Ulrike and Vogt, Annika}, title = {Skin penetration and dexamethasone release from polymer nanoparticles in ex vivo human skin}, series = {The journal of investigative dermatology}, volume = {135}, booktitle = {The journal of investigative dermatology}, publisher = {Nature Publ. Group}, address = {New York}, issn = {0022-202X}, pages = {S52 -- S52}, year = {2015}, language = {en} } @article{AhlbergRancanEppleetal.2016, author = {Ahlberg, Sebastian and Rancan, Fiorenza and Epple, Matthias and Loza, Kateryna and H{\"o}ppe, David and Lademann, J{\"u}rgen and Vogt, Annika and Kleuser, Burkhard and Gerecke, Christian and Meinke, Martina C.}, title = {Comparison of different methods to study effects of silver nanoparticles on the pro- and antioxidant status of human keratinocytes and fibroblasts}, series = {Methods : focusing on rapidly developing techniques}, volume = {109}, journal = {Methods : focusing on rapidly developing techniques}, publisher = {Elsevier}, address = {San Diego}, issn = {1046-2023}, doi = {10.1016/j.ymeth.2016.05.015}, pages = {55 -- 63}, year = {2016}, language = {en} } @article{DoegeHoenzkeSchumacheretal.2016, author = {D{\"o}ge, Nadine and H{\"o}nzke, Stefan and Schumacher, Fabian and Balzus, Benjamin and Colombo, Miriam and Hadam, Sabrina and Rancan, Fiorenza and Blume-Peytavi, Ulrike and Sch{\"a}fer-Korting, Monika and Schindler, Anke and R{\"u}hl, Eckart and Skov, Per Stahl and Church, Martin K. and Hedtrich, Sarah and Kleuser, Burkhard and Bodmeier, Roland and Vogt, Annika}, title = {Ethyl cellulose nanocarriers and nanocrystals differentially deliver dexamethasone into intact, tape-stripped or sodium lauryl sulfate-exposed ex vivo human skin - assessment by intradermal microdialysis and extraction from the different skin layers}, series = {Journal of controlled release}, volume = {242}, journal = {Journal of controlled release}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2016.07.009}, pages = {25 -- 34}, year = {2016}, abstract = {Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-termex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24 h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05\%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24 h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6 h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45 kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for preclinical assessment of novel drug delivery systems at therapeutic doses in models of diseased skin. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @misc{DoegeSchumacherBalzusetal.2017, author = {D{\"o}ge, Nadine and Schumacher, Fabian and Balzus, Benjamin and Colombo, Miriam and Hadam, Sabrina and Rancan, Fiorenza and Blume-Peytavi, Ulrike and Kleuser, Burkhard and Bodmeier, Roland and Vogt, Annika}, title = {Particle- based formulations and controlled skin barrier disruption have a signifi cant impact on the delivery and penetration kinetics of dexamethasone as assessed in an ex vivo microdialysis}, series = {Journal der Deutschen Dermatologischen Gesellschaft}, volume = {15}, journal = {Journal der Deutschen Dermatologischen Gesellschaft}, publisher = {Wiley}, address = {Berlin}, issn = {1610-0379}, pages = {182 -- 182}, year = {2017}, abstract = {Preclinical assessment of penetration not only in intact, but also in barrier-disrupted skin is important to explore the surplus value of novel drug delivery systems, which can be specifically designed for diseased skin. Here, we characterized physical and chemical barrier disruption protocols for short-term ex vivo skin cultures with regard to structural integrity, physiological and biological parameters. Further, we compared the penetration of dexamethasone (Dex) in different nanoparticle-based formulations in stratum corneum, epidermis and dermis extracts of intact vs. barrier-disrupted skin as well as by dermal microdialysis at 6, 12 and 24 hours after topical application. Dex was quantified by liquid-chromatography - tandem-mass spectrometry (LC-MS/MS). Simultaneously, we investigated the Dex efficacy by interleukin (IL) analysis. Tape-stripping (TS) and 4 hours sodium lauryl sulfate 5 \% (SLS) exposure were identified as highly effective barrier disruption methods assessed by reproducible transepidermal water loss (TEWL) changes and IL-6/8 increase which was more pronounced in SLS-treated skin. The barrier state has also a significant impact on the Dex penetration kinetics: for all formulations, TS highly increased dermal Dex concentration despite the fact that nanocrystals quickly and effectively penetrated both, intact and barrier-disrupted skin reaching significantly higher dermal Dex concentration after 6 hours compared to Dex cream. The surplus value of encapsulation in ethyl cellulose nanocarriers could mostly be observed when applied on intact skin, in general showing a delayed Dex penetration. Estimation of cytokines was limited due to the trauma caused by probe insertion. In summary, ex vivo human skin is a highly interesting short-term preclinical model for the analysis of penetration and efficacy of novel drug delivery systems.}, language = {en} } @article{FrombachUnbehauenKurniasihetal.2019, author = {Frombach, Janna and Unbehauen, Michael and Kurniasih, Indah N. and Schumacher, Fabian and Volz, Pierre and Hadam, Sabrina and Rancan, Fiorenza and Blume-Peytavi, Ulrike and Kleuser, Burkhard and Haag, Rainer and Alexiev, Ulrike and Vogt, Annika}, title = {Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin}, series = {Journal of controlled release}, volume = {299}, journal = {Journal of controlled release}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2019.02.028}, pages = {138 -- 148}, year = {2019}, abstract = {In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 mu g DXM/cm(2) skin encapsulated in CMS-NC (12 nm diameter, 5.8\% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9\% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25\% CD1a(+) cells were found within the epidermal CMS-NC+ population compared to approximately 3\% CD1a(+)/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial.}, language = {en} } @article{RancanVolkmannGiulbudagianetal.2019, author = {Rancan, Fiorenza and Volkmann, Hildburg and Giulbudagian, Michael and Schumacher, Fabian and Stanko, Jessica Isolde and Kleuser, Burkhard and Blume-Peytavi, Ulrike and Calderon, Marcelo and Vogt, Annika}, title = {Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels}, series = {Pharmaceutics : Molecular Diversity Preservation International}, volume = {11}, journal = {Pharmaceutics : Molecular Diversity Preservation International}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1999-4923}, doi = {10.3390/pharmaceutics11080394}, pages = {14}, year = {2019}, abstract = {Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1\% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1\% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions.}, language = {en} } @misc{RancanVolkmannGiulbudagianetal.2019, author = {Rancan, Fiorenza and Volkmann, Hildburg and Giulbudagian, Michael and Schumacher, Fabian and Stanko, Jessica Isolde and Kleuser, Burkhard and Blume-Peytavi, Ulrike and Calder{\´o}n, Marcelo and Vogt, Annika}, title = {Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1339}, issn = {1866-8372}, doi = {10.25932/publishup-47327}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473270}, pages = {14}, year = {2019}, abstract = {Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1\% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1\% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions.}, language = {en} }