@misc{CardinalettiKestersBerthoetal.2014, author = {Cardinaletti, Ilaria and Kesters, Jurgen and Bertho, Sabine and Conings, Bert and Piersimoni, Fortunato and Lutsen, Laurence and Nesladek, Milos and Van Mele, Bruno and Van Assche, Guy and Vandewal, Koen and Salleo, Alberto and Vanderzande, Dirk and Maes, Wouter and Manca, Jean V.}, title = {Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology}, series = {Journal of photonics for energy}, volume = {4}, journal = {Journal of photonics for energy}, publisher = {SPIE}, address = {Bellingham}, issn = {1947-7988}, doi = {10.1117/1.JPE.4.040997}, pages = {12}, year = {2014}, abstract = {When state-of-the-art bulk heterojunction organic solar cells with ideal morphology are exposed to prolonged storage or operation at elevated temperatures, a thermally induced disruption of the active layer blend can occur, in the form of a separation of donor and acceptor domains, leading to diminished photovoltaic performance. Toward the long-term use of organic solar cells in real-life conditions, an important challenge is, therefore, the development of devices with a thermally stable active layer morphology. Several routes are being explored, ranging from the use of high glass transition temperature, cross-linkable and/or side-chain functionalized donor and acceptor materials, to light-induced dimerization of the fullerene acceptor. A better fundamental understanding of the nature and underlying mechanisms of the phase separation and stabilization effects has been obtained through a variety of analytical, thermal analysis, and electro-optical techniques. Accelerated aging systems have been used to study the degradation kinetics of bulk heterojunction solar cells in situ at various temperatures to obtain aging models predicting solar cell lifetime. The following contribution gives an overview of the current insights regarding the intrinsic thermally induced aging effects and the proposed solutions, illustrated by examples of our own research groups. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.}, language = {en} } @article{ShivhareErdmannHoermannetal.2018, author = {Shivhare, Rishi and Erdmann, Tim and Hoermann, Ulrich and Collado-Fregoso, Elisa and Zeiske, Stefan and Benduhn, Johannes and Ullbrich, Sascha and Huebner, Rene and Hambsch, Mike and Kiriy, Anton and Voit, Brigitte and Neher, Dieter and Vandewal, Koen and Mannsfeld, Stefan C. B.}, title = {Alkyl Branching Position in Diketopyrrolopyrrole Polymers}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b02739}, pages = {6801 -- 6809}, year = {2018}, abstract = {Diketopyrrolopyrrole (DPP)-based donor acceptor copolymers have gained a significant amount of research interest in the organic electronics community because of their high charge carrier mobilities in organic field-effect transistors (OFETs) and their ability to harvest near-infrared (NIR) photons in solar cells. In this study, we have synthesized four DPP based donor-acceptor copolymers with variations in the donor unit and the branching point of the solubilizing alkyl chains (at the second or sixth carbon position). Grazing incidence wide-angle X-ray scattering (GIWAXS) results suggest that moving the branching point further away from the polymer backbone increases the tendency for aggregation and yields polymer phases with a higher degree of crystallinity (DoC). The polymers were blended with PC70BM and used as active layers in solar cells. A careful analysis of the energetics of the neat polymer and blend films reveals that the charge-transfer state energy (E-CT) of the blend films lies exceptionally close to the singlet energy of the donor (E-D*), indicating near zero electron transfer losses. The difference between the optical gap and open-circuit voltage (V-OC) is therefore determined to be due to rather high nonradiative 418 +/- 13 mV) and unavoidable radiative voltage losses (approximate to 255 +/- 8 mV). Even though the four materials have similar optical gaps, the short-circuit current density (J(SC)) covers a vast span from 7 to 18 mA cm(-2) for the best performing system. Using photoluminescence (PL) quenching and transient charge extraction techniques, we quantify geminate and nongeminate losses and find that fewer excitons reach the donor-acceptor interface in polymers with further away branching points due to larger aggregate sizes. In these material systems, the photogeneration is therefore mainly limited by exciton harvesting efficiency.}, language = {en} } @article{AlbrechtVandewalTumblestonetal.2014, author = {Albrecht, Steve and Vandewal, Koen and Tumbleston, John R. and Fischer, Florian S. U. and Douglas, Jessica D. and Frechet, Jean M. J. and Ludwigs, Sabine and Ade, Harald W. and Salleo, Alberto and Neher, Dieter}, title = {On the efficiency of charge transfer state splitting in polymer: Fullerene solar cells}, series = {Advanced materials}, volume = {26}, journal = {Advanced materials}, number = {16}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201305283}, pages = {2533 -- 2539}, year = {2014}, language = {en} } @article{SchubertCollinsMangoldetal.2014, author = {Schubert, Marcel and Collins, Brian A. and Mangold, Hannah and Howard, Ian A. and Schindler, Wolfram and Vandewal, Koen and Roland, Steffen and Behrends, Jan and Kraffert, Felix and Steyrleuthner, Robert and Chen, Zhihua and Fostiropoulos, Konstantinos and Bittl, Robert and Salleo, Alberto and Facchetti, Antonio and Laquai, Frederic and Ade, Harald W. and Neher, Dieter}, title = {Correlated donor/acceptor crystal orientation controls photocurrent generation in all-polymer solar cells}, series = {Advanced functional materials}, volume = {24}, journal = {Advanced functional materials}, number = {26}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201304216}, pages = {4068 -- 4081}, year = {2014}, abstract = {New polymers with high electron mobilities have spurred research in organic solar cells using polymeric rather than fullerene acceptors due to their potential of increased diversity, stability, and scalability. However, all-polymer solar cells have struggled to keep up with the steadily increasing power conversion efficiency of polymer: fullerene cells. The lack of knowledge about the dominant recombination process as well as the missing concluding picture on the role of the semi-crystalline microstructure of conjugated polymers in the free charge carrier generation process impede a systematic optimization of all-polymer solar cells. These issues are examined by combining structural and photo-physical characterization on a series of poly(3-hexylthiophene) (donor) and P(NDI2OD-T2) (acceptor) blend devices. These experiments reveal that geminate recombination is the major loss channel for photo-excited charge carriers. Advanced X-ray and electron-based studies reveal the effect of chloronaphthalene co-solvent in reducing domain size, altering domain purity, and reorienting the acceptor polymer crystals to be coincident with those of the donor. This reorientation correlates well with the increased photocurrent from these devices. Thus, effi cient split-up of geminate pairs at polymer/polymer interfaces may necessitate correlated donor/acceptor crystal orientation, which represents an additional requirement compared to the isotropic fullerene acceptors.}, language = {en} } @article{PiersimoniSchlesingerBenduhnetal.2015, author = {Piersimoni, Fortunato and Schlesinger, Raphael and Benduhn, Johannes and Spoltore, Donato and Reiter, Sina and Lange, Ilja and Koch, Norbert and Vandewal, Koen and Neher, Dieter}, title = {Charge Transfer Absorption and Emission at ZnO/Organic Interfaces}, series = {The journal of physical chemistry letters}, volume = {6}, journal = {The journal of physical chemistry letters}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz502657z}, pages = {500 -- 504}, year = {2015}, abstract = {We investigate hybrid charge transfer states (HCTS) at the planar interface between a-NPD and ZnO by spectrally resolved electroluminescence (EL) and external quantum efficiency (EQE) measurements. Radiative decay of HCTSs is proven by distinct emission peaks in the EL spectra of such bilayer devices in the NIR at energies well below the bulk a-NPD or ZnO emission. The EQE spectra display low energy contributions clearly red-shifted with respect to the a-NPD photocurrent and partially overlapping with the EL emission. Tuning of the energy gap between the ZnO conduction band and a-NPD HOMO level (E-int) was achieved by modifying the ZnO surface with self-assembled monolayers based on phosphonic acids. We find a linear dependence of the peak position of the NIR EL on E-int, which unambiguously attributes the origin of this emission to radiative recombination between an electron on the ZnO and a hole on a-NPD. In accordance with this interpretation, we find a strictly linear relation between the open-circuit voltage and the energy of the charge state for such hybrid organicinorganic interfaces.}, language = {en} } @article{VandewalBenduhnSchellhammeretal.2017, author = {Vandewal, Koen and Benduhn, Johannes and Schellhammer, Karl Sebastian and Vangerven, Tim and R{\"u}ckert, Janna E. and Piersimoni, Fortunato and Scholz, Reinhard and Zeika, Olaf and Fan, Yeli and Barlow, Stephen and Neher, Dieter and Marder, Seth R. and Manca, Jean and Spoltore, Donato and Cuniberti, Gianaurelio and Ortmann, Frank}, title = {Absorption Tails of Donor}, series = {Journal of the American Chemical Society}, volume = {139}, journal = {Journal of the American Chemical Society}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.6b12857}, pages = {1699 -- 1704}, year = {2017}, abstract = {In disordered organic semiconductors, the transfer of a rather localized charge carrier from one site to another triggers a deformation of the molecular structure quantified by the intramolecular relaxation energy. A similar structural relaxation occurs upon population of intermolecular charge-transfer (CT) states formed at organic electron donor (D)-acceptor (A) interfaces. Weak CT absorption bands for D A complexes occur at photon energies below the optical gaps of both the donors and the C-60 acceptor as a result of optical transitions from the neutral ground state to the ionic CT state. In this work, we show that temperature-activated intramolecular vibrations of the ground state play a major role in determining the line shape of such CT absorption bands. This allows us to extract values for the relaxation energy related to the geometry change from neutral to ionic CT complexes. Experimental values for the relaxation energies of 20 D:C-60 CT complexes correlate with values calculated within density functional theory. These results provide an experimental method for determining the polaron relaxation energy in solid-state organic D-A blends and show the importance of a reduced relaxation energy, which we introduce to characterize thermally activated CT processes.}, language = {en} } @article{VandewalAlbrechtHokeetal.2014, author = {Vandewal, Koen and Albrecht, Steve and Hoke, Eric T. and Graham, Kenneth R. and Widmer, Johannes and Douglas, Jessica D. and Schubert, Marcel and Mateker, William R. and Bloking, Jason T. and Burkhard, George F. and Sellinger, Alan and Frechet, Jean M. J. and Amassian, Aram and Riede, Moritz K. and McGehee, Michael D. and Neher, Dieter and Salleo, Alberto}, title = {Efficient charge generation by relaxed charge-transfer states at organic interfaces}, series = {Nature materials}, volume = {13}, journal = {Nature materials}, number = {1}, publisher = {Nature Publ. Group}, address = {London}, issn = {1476-1122}, doi = {10.1038/NMAT3807}, pages = {63 -- 68}, year = {2014}, abstract = {carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold viaweakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer: fullerene, small-molecule:C-60 and polymer: polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90\% without the need for excess electronic or vibrational energy.}, language = {en} } @article{NikolisMischokSiegmundetal.2019, author = {Nikolis, Vasileios C. and Mischok, Andreas and Siegmund, Bernhard and Kublitski, Jonas and Jia, Xiangkun and Benduhn, Johannes and H{\"o}rmann, Ulrich and Neher, Dieter and Gather, Malte C. and Spoltore, Donato and Vandewal, Koen}, title = {Strong light-matter coupling for reduced photon energy losses in organic photovoltaics}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-11717-5}, pages = {8}, year = {2019}, abstract = {Strong light-matter coupling can re-arrange the exciton energies in organic semiconductors. Here, we exploit strong coupling by embedding a fullerene-free organic solar cell (OSC) photo-active layer into an optical microcavity, leading to the formation of polariton peaks and a red-shift of the optical gap. At the same time, the open-circuit voltage of the device remains unaffected. This leads to reduced photon energy losses for the low-energy polaritons and a steepening of the absorption edge. While strong coupling reduces the optical gap, the energy of the charge-transfer state is not affected for large driving force donor-acceptor systems. Interestingly, this implies that strong coupling can be exploited in OSCs to reduce the driving force for electron transfer, without chemical or microstructural modifications of the photoactive layer. Our work demonstrates that the processes determining voltage losses in OSCs can now be tuned, and reduced to unprecedented values, simply by manipulating the device architecture.}, language = {en} } @article{PoelkingBenduhnSpoltoreetal.2022, author = {Poelking, Carl and Benduhn, Johannes and Spoltore, Donato and Schwarze, Martin and Roland, Steffen and Piersimoni, Fortunato and Neher, Dieter and Leo, Karl and Vandewal, Koen and Andrienko, Denis}, title = {Open-circuit voltage of organic solar cells}, series = {Communications physics}, volume = {5}, journal = {Communications physics}, number = {1}, publisher = {Nature portfolio}, address = {Berlin}, issn = {2399-3650}, doi = {10.1038/s42005-022-01084-x}, pages = {7}, year = {2022}, abstract = {Organic photovoltaics (PV) is an energy-harvesting technology that offers many advantages, such as flexibility, low weight and cost, as well as environmentally benign materials and manufacturing techniques. Despite growth of power conversion efficiencies to around 19 \% in the last years, organic PVs still lag behind inorganic PV technologies, mainly due to high losses in open-circuit voltage. Understanding and improving open circuit voltage in organic solar cells is challenging, as it is controlled by the properties of a donor-acceptor interface where the optical excitations are separated into charge carriers. Here, we provide an electrostatic model of a rough donor-acceptor interface and test it experimentally on small molecule PV materials systems. The model provides concise relationships between the open-circuit voltage, photovoltaic gap, charge-transfer state energy, and interfacial morphology. In particular, we show that the electrostatic bias generated across the interface reduces the photovoltaic gap. This negative influence on open-circuit voltage can, however, be circumvented by adjusting the morphology of the donor-acceptor interface. Organic solar cells, despite their high power conversion efficiencies, suffer from open circuit voltage losses making them less appealing in terms of applications. Here, the authors, supported with experimental data on small molecule photovoltaic cells, relate open circuit voltage to photovoltaic gap, charge-transfer state energy, and donor-acceptor interfacial morphology.}, language = {en} } @article{FritschKurpiersRolandetal.2022, author = {Fritsch, Tobias and Kurpiers, Jona and Roland, Steffen and Tokmoldin, Nurlan and Shoaee, Safa and Ferron, Thomas and Collins, Brian A. and Janietz, Silvia and Vandewal, Koen and Neher, Dieter}, title = {On the interplay between CT and singlet exciton emission in organic solar cells with small driving force and its impact on voltage loss}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {31}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202200641}, pages = {11}, year = {2022}, abstract = {The interplay between free charge carriers, charge transfer (CT) states and singlet excitons (S-1) determines the recombination pathway and the resulting open circuit voltage (V-OC) of organic solar cells. By combining a well-aggregated low bandgap polymer with different blend ratios of the fullerenes PCBM and ICBA, the energy of the CT state (E-CT) is varied by 130 meV while leaving the S-1 energy of the polymer (ES1\[{E_{{{\rm{S}}_1}}}\]) unaffected. It is found that the polymer exciton dominates the radiative properties of the blend when ECT\[{E_{{\rm{CT}}}}\] approaches ES1\[{E_{{{\rm{S}}_1}}}\], while the V-OC remains limited by the non-radiative decay of the CT state. It is concluded that an increasing strength of the exciton in the optical spectra of organic solar cells will generally decrease the non-radiative voltage loss because it lowers the radiative V-OC limit (V-OC,V-rad), but not because it is more emissive. The analysis further suggests that electronic coupling between the CT state and the S-1 will not improve the V-OC, but rather reduce the V-OC,V-rad. It is anticipated that only at very low CT state absorption combined with a fairly high CT radiative efficiency the solar cell benefit from the radiative properties of the singlet excitons.}, language = {en} }