@article{UtechtKlamroth2018, author = {Utecht, Manuel Martin and Klamroth, Tillmann}, title = {Local resonances in STM manipulation of chlorobenzene on Si(111)-7x7}, series = {Molecular physics}, volume = {116}, journal = {Molecular physics}, number = {13}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0026-8976}, doi = {10.1080/00268976.2018.1442939}, pages = {1687 -- 1696}, year = {2018}, abstract = {Hot localised charge carriers on the Si(111)-7x7 surface are modelled by small charged clusters. Such resonances induce non-local desorption, i.e. more than 10 nm away from the injection site, of chlorobenzene in scanning tunnelling microscope experiments. We used such a cluster model to characterise resonance localisation and vibrational activation for positive and negative resonances recently. In this work, we investigate to which extent the model depends on details of the used cluster or quantum chemistry methods and try to identify the smallest possible cluster suitable for a description of the neutral surface and the ion resonances. Furthermore, a detailed analysis for different chemisorption orientations is performed. While some properties, as estimates of the resonance energy or absolute values for atomic changes, show such a dependency, the main findings are very robust with respect to changes in the model and/or the chemisorption geometry. [GRAPHICS] .}, language = {en} } @misc{UtechtKlamroth2018, author = {Utecht, Manuel Martin and Klamroth, Tillmann}, title = {Local resonances in STM manipulation of chlorobenzene on Si(111)-7×7}, series = {Molecular Physics}, journal = {Molecular Physics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412970}, pages = {11}, year = {2018}, abstract = {Hot localised charge carriers on the Si(111)-7×7 surface are modelled by small charged clusters. Such resonances induce non-local desorption, i.e. more than 10 nm away from the injection site, of chlorobenzene in scanning tunnelling microscope experiments. We used such a cluster model to characterise resonance localisation and vibrational activation for positive and negative resonances recently. In this work, we investigate to which extent the model depends on details of the used cluster or quantum chemistry methods and try to identify the smallest possible cluster suitable for a description of the neutral surface and the ion resonances. Furthermore, a detailed analysis for different chemisorption orientations is performed. While some properties, as estimates of the resonance energy or absolute values for atomic changes, show such a dependency, the main findings are very robust with respect to changes in the model and/or the chemisorption geometry.}, language = {en} }