@article{RadbruchPischonOstrowskietal.2017, author = {Radbruch, Moritz and Pischon, Hannah and Ostrowski, Anja and Volz, Pierre and Brodwolf, Robert and Neumann, Falko and Unbehauen, Michael and Kleuser, Burkhard and Haag, Rainer and Ma, Nan and Alexiev, Ulrike and Mundhenk, Lars and Gruber, Achim D.}, title = {Dendritic core-multishell nanocarriers in murine models of healthy and atopic skin}, series = {Nanoscale Research Letters}, volume = {12}, journal = {Nanoscale Research Letters}, number = {64}, publisher = {Springer}, address = {New York}, issn = {1556-276X}, doi = {10.1186/s11671-017-1835-0}, pages = {12}, year = {2017}, abstract = {Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e. g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment. Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection. Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis. Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin.}, language = {en} } @article{EdlichVolzBrodwolfetal.2018, author = {Edlich, Alexander and Volz, Pierre and Brodwolf, Robert and Unbehauen, Michael and Mundhenk, Lars and Gruber, Achim D. and Hedtrich, Sarah and Haag, Rainer and Alexiev, Ulrike and Kleuser, Burkhard}, title = {Crosstalk between core-multishell nanocarriers for cutaneous drug delivery and antigen-presenting cells of the skin}, series = {Biomaterials : biomaterials reviews online}, volume = {162}, journal = {Biomaterials : biomaterials reviews online}, publisher = {Elsevier}, address = {Oxford}, issn = {0142-9612}, doi = {10.1016/j.biomaterials.2018.01.058}, pages = {60 -- 70}, year = {2018}, abstract = {Owing their unique chemical and physical properties core-multishell (CMS) nanocarriers are thought to underlie their exploitable biomedical use for a topical treatment of skin diseases. This highlights the need to consider not only the efficacy of CMS nanocarriers but also the potentially unpredictable and adverse consequences of their exposure thereto. As CMS nanocarriers are able to penetrate into viable layers of normal and stripped human skin ex vivo as well as in in vitro skin disease models the understanding of nanoparticle crosstalk with components of the immune system requires thorough investigation. Our studies highlight the biocompatible properties of CMS nanocarriers on Langerhans cells of the skin as they did neither induce cytotoxicity and genotoxicity nor cause reactive oxygen species (ROS) or an immunological response. Nevertheless, CMS nanocarriers were efficiently taken up by Langerhans cells via divergent endocytic pathways. Bioimaging of CMS nanocarriers by fluorescence lifetime imaging microscopy (FLIM) and flow cytometry indicated not only a localization within the lysosomes but also an energy-dependent exocytosis of unmodified CMS nanocarriers into the extracellular environment. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @article{HoenzkeGereckeElpeltetal.2016, author = {H{\"o}nzke, Stefan and Gerecke, Christian and Elpelt, Anja and Zhang, Nan and Unbehauen, Michael and Kral, Vivian and Fleige, Emanuel and Paulus, Florian and Haag, Rainer and Sch{\"a}fer-Korting, Monika and Kleuser, Burkhard and Hedtrich, Sarah}, title = {Tailored dendritic core-multishell nanocarriers for efficient dermal drug delivery: A systematic top-down approach from synthesis to preclinical testing}, series = {Journal of controlled release}, volume = {242}, journal = {Journal of controlled release}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2016.06.030}, pages = {50 -- 63}, year = {2016}, abstract = {Drug loaded dendritic core-multishell (CMS) nanocarriers are of especial interest for the treatment of skin diseases, owing to their striking dermal delivery efficiencies following topical applications. CMS nanocarriers are composed of a polyglycerol core, connected by amide-bonds to an inner alkyl shell and an outer methoxy poly(ethylene glycol) shell. Since topically applied nanocarriers are subjected to biodegradation, the application of conventional amide-based CMS nanocarriers (10-A-18-350) has been limited by the potential production of toxic polyglycerol amines. To circumvent this issue, three tailored ester-based CMS nanocarriers (10-E-12-350, 10-E-15-350, 10-E-18-350) of varying inner alkyl chain length were synthesized and comprehensively characterized in terms of particle size, drug loading, biodegradation and dermal drug delivery efficiency. Dexamethasone (DXM), a potent drug widely used for the treatment of inflammatory skin diseases, was chosen as a therapeutically relevant test compound for the present study. Ester-and amide-based CMS nanocarriers delivered DXM more efficiently into human skin than a commercially available DXM cream. Subsequent in vitro and in vivo toxicity studies identified CMS (10-E-15-350) as the most biocompatible carrier system. The anti-inflammatory potency of DXM-loaded CMS (10-E-15-350) nanocarriers was assessed in TNF alpha supplemented skin models, where a significant reduction of the pro-inflammatory cytokine IL-8 was seen, with markedly greater efficacy than commercial DXM cream. In summary, we report the rational design and characterization of tailored, biodegradable, ester-based CMS nanocarriers, and their subsequent stepwise screening for biocompatibility, dermal delivery efficiency and therapeutic efficacy in a top-down approach yielding the best carrier system for topical applications. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{FrombachUnbehauenKurniasihetal.2019, author = {Frombach, Janna and Unbehauen, Michael and Kurniasih, Indah N. and Schumacher, Fabian and Volz, Pierre and Hadam, Sabrina and Rancan, Fiorenza and Blume-Peytavi, Ulrike and Kleuser, Burkhard and Haag, Rainer and Alexiev, Ulrike and Vogt, Annika}, title = {Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin}, series = {Journal of controlled release}, volume = {299}, journal = {Journal of controlled release}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2019.02.028}, pages = {138 -- 148}, year = {2019}, abstract = {In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 mu g DXM/cm(2) skin encapsulated in CMS-NC (12 nm diameter, 5.8\% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9\% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25\% CD1a(+) cells were found within the epidermal CMS-NC+ population compared to approximately 3\% CD1a(+)/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial.}, language = {en} }