@article{ErrardUlrichsKuehneetal.2015, author = {Errard, Audrey and Ulrichs, Christian and Kuehne, Stefan and Mewis, Inga and Drungowski, Mario and Schreiner, Monika and Baldermann, Susanne}, title = {Single- versus multiple-pest infestation affects differently the Biochemistry of Tomato (Solanum lycopersicum 'Ailsa Craig')}, series = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, volume = {63}, journal = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-8561}, doi = {10.1021/acs.jafc.5b03884}, pages = {10103 -- 10111}, year = {2015}, abstract = {Tomato is susceptible to pest infestations by both spider mites and aphids. The effects of each individual pest on plants are known, whereas multiple-pest infestations have received little interest. We studied the effects of single-versus multiple-pest infestation by Tetranychus urticae and Myzus persicae on tomato biochemistry (Solanum lycopersicum) by combining a metabolomic approach and analyses of carotenoids using UHPLC-ToF-MS and volatiles using GC-MS. Plants responded differently to aphids and mites after 3 weeks of infestation, and a multiple infestation induced a specific metabolite composition in plants. In addition, we showed that volatiles emissions differed between the adaxial and abaxial leaf epidermes and identified compounds emitted particularly in response to a multiple infestation (cyclohexadecane, dodecane, aromadendrene, and beta-elemene). Finally, the carotenoid concentrations in leaves and stems were more affected by multiple than single infestations. Our study highlights and discusses the interplay of biotic stressors within the terpenoid metabolism.}, language = {en} } @article{ErrardBaldermannKuehneetal.2015, author = {Errard, Audrey and Baldermann, Susanne and K{\"u}hne, Stefan and Mewis, Inga and Peterkin, John and Ulrichs, Christian}, title = {Interspecific Interactions Affect Pests Differently}, series = {Gesunde Pflanzen : Pflanzenschutz, Verbraucherschutz, Umweltschutz}, volume = {67}, journal = {Gesunde Pflanzen : Pflanzenschutz, Verbraucherschutz, Umweltschutz}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0367-4223}, doi = {10.1007/s10343-015-0349-x}, pages = {183 -- 190}, year = {2015}, abstract = {Spider mites, Tetranychus urticae Koch (Acari: Tetranychidae) and aphids, Myzus persicae (Sulzer) (Pterygota: Aphididae) share many host-plants, similar abiotic conditions and are world-wide distributed therefore, they often occur simultaneously in crops. However, the effects of interspecific interactions on the biology of these pests were poorly investigated. To test if they perform differently under intra- versus inter-specific interactions, host-plant acceptance, fecundity, survival, the total number of individuals and the rate of increase in the number of individuals were studied doing non-choice bioassays under laboratory conditions with leaf discs of tomato (Solanum lycopersicum L. 'Ailsa Craig'), pak choi (Brassica rapa L. var. chinensis 'Black Behi') and bean (Phaseolus vulgaris L. 'Saxa'). Alone, the pests differently accepted the host-plants. The acceptance of pak choi by spider mites was lower under interspecific interactions and higher on tomato for aphids. In general, spider mites' performance decreased when aphids were present; the fecundity, the number of individuals and the rate of increase being significantly lower on pak choi and bean. In contrast, aphids produced more offspring in the presence of spider mites, leading to a higher rate of increase in aphids individuals on tomato and pak choi. Thus, pest' responses to interspecific interactions is species-specific.}, language = {en} }