@article{KachlerBailerHeimetal.2017, author = {Kachler, Katerina and Bailer, Maximilian and Heim, Lisanne and Schumacher, Fabian and Reichel, Martin and Holzinger, Corinna D. and Trump, Sonja and Mittler, Susanne and Monti, Juliana and Trufa, Denis I. and Rieker, Ralf J. and Hartmann, Arndt and Sirbu, Horia and Kleuser, Burkhard and Kornhuber, Johannes and Finotto, Susetta}, title = {Enhanced acid sphingomyelinase activity drives immune evasion and tumor growth in non-small cell lung carcinoma}, series = {Cancer research}, volume = {77}, journal = {Cancer research}, number = {21}, publisher = {American Association for Cancer Research}, address = {Philadelphia}, issn = {0008-5472}, doi = {10.1158/0008-5472.CAN-16-3313}, pages = {5963 -- 5976}, year = {2017}, abstract = {The lipid hydrolase enzyme acid sphingomyelinase (ASM) is required for the conversion of the lipid cell membrane component sphingomyelin into ceramide. In cancer cells, ASM-mediated ceramide production is important for apoptosis, cell proliferation, and immune modulation, highlighting ASM as a potential multimodal therapeutic target. In this study, we demonstrate elevated ASM activity in the lung tumor environment and blood serum of patients with non-small cell lung cancer (NSCLC). RNAi-mediated attenuation of SMPD1 in human NSCLC cells rendered them resistant to serum starvation-induced apoptosis. In a murine model of lung adenocarcinoma, ASM deficiency reduced tumor development in a manner associated with significant enhancement of Th1-mediated and cytotoxic T-cell-mediated antitumor immunity. Our findings indicate that targeting ASM in NSCLC can act by tumor cell-intrinsic and-extrinsic mechanisms to suppress tumor cell growth, most notably by enabling an effective antitumor immune response by the host. (C) 2017 AACR.}, language = {en} }