@misc{HetenyiMolinariClintonetal.2018, author = {Hetenyi, Gyorgy and Molinari, Irene and Clinton, John and Bokelmann, Gotz and Bondar, Istvan and Crawford, Wayne C. and Dessa, Jean-Xavier and Doubre, Cecile and Friederich, Wolfgang and Fuchs, Florian and Giardini, Domenico and Graczer, Zoltan and Handy, Mark R. and Herak, Marijan and Jia, Yan and Kissling, Edi and Kopp, Heidrun and Korn, Michael and Margheriti, Lucia and Meier, Thomas and Mucciarelli, Marco and Paul, Anne and Pesaresi, Damiano and Piromallo, Claudia and Plenefisch, Thomas and Plomerova, Jaroslava and Ritter, Joachim and Rumpker, Georg and Sipka, Vesna and Spallarossa, Daniele and Thomas, Christine and Tilmann, Frederik and Wassermann, Joachim and Weber, Michael and Weber, Zoltan and Wesztergom, Viktor and Zivcic, Mladen and Abreu, Rafael and Allegretti, Ivo and Apoloner, Maria-Theresia and Aubert, Coralie and Besancon, Simon and de Berc, Maxime Bes and Brunel, Didier and Capello, Marco and Carman, Martina and Cavaliere, Adriano and Cheze, Jerome and Chiarabba, Claudio and Cougoulat, Glenn and Cristiano, Luigia and Czifra, Tibor and Danesi, Stefania and Daniel, Romuald and Dannowski, Anke and Dasovic, Iva and Deschamps, Anne and Egdorf, Sven and Fiket, Tomislav and Fischer, Kasper and Funke, Sigward and Govoni, Aladino and Groschl, Gidera and Heimers, Stefan and Heit, Ben and Herak, Davorka and Huber, Johann and Jaric, Dejan and Jedlicka, Petr and Jund, Helene and Klingen, Stefan and Klotz, Bernhard and Kolinsky, Petr and Kotek, Josef and Kuhne, Lothar and Kuk, Kreso and Lange, Dietrich and Loos, Jurgen and Lovati, Sara and Malengros, Deny and Maron, Christophe and Martin, Xavier and Massa, Marco and Mazzarini, Francesco and Metral, Laurent and Moretti, Milena and Munzarova, Helena and Nardi, Anna and Pahor, Jurij and Pequegnat, Catherine and Petersen, Florian and Piccinini, Davide and Pondrelli, Silvia and Prevolnik, Snjezan and Racine, Roman and Regnier, Marc and Reiss, Miriam and Salimbeni, Simone and Santulin, Marco and Scherer, Werner and Schippkus, Sven and Schulte-Kortnack, Detlef and Solarino, Stefano and Spieker, Kathrin and Stipcevic, Josip and Strollo, Angelo and Sule, Balint and Szanyi, Gyongyver and Szucs, Eszter and Thorwart, Martin and Ueding, Stefan and Vallocchia, Massimiliano and Vecsey, Ludek and Voigt, Rene and Weidle, Christian and Weyland, Gauthier and Wiemer, Stefan and Wolf, Felix and Wolyniec, David and Zieke, Thomas}, title = {The AlpArray seismic network}, series = {Surveys in Geophysics}, volume = {39}, journal = {Surveys in Geophysics}, number = {5}, publisher = {Springer}, address = {Dordrecht}, organization = {ETHZ SED Elect Lab AlpArray Seismic Network Team AlpArray OBS Cruise Crew AlpArray Working Grp}, issn = {0169-3298}, doi = {10.1007/s10712-018-9472-4}, pages = {1009 -- 1033}, year = {2018}, abstract = {The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.}, language = {en} } @article{ReinHannemannThomasetal.2020, author = {Rein, Theresa and Hannemann, Katrin and Thomas, Christine and Korn, Michael}, title = {Location and characteristics of the X-discontinuity beneath SW Morocco and the adjacent shelf area using P-wave receiver functions}, series = {Geophysical journal international}, volume = {223}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggaa379}, pages = {1780 -- 1793}, year = {2020}, abstract = {Receiver function approaches have proven to be valuable for the investigation of crustal and upper mantle discontinuities whose sharp changes in seismic velocities cause wave conversions. While the crustal and mantle transition zone discontinuities are largely understood, the X-discontinuity at 250-350 km depth is still an object of controversial debate. The origin and global distribution of this structure with a velocity jump of 1.5-4.8\% for compressional and shear waves is still unexplained. Although the crustal and mantle transition zone discontinuities beneath SW Morocco and surroundings have been investigated, only a few studies observed the X-discontinuity and place the depth at 260-370 km beneath the region of western Morocco. In order to better locate and characterize the X-discontinuity beneath southwest Morocco, we create P-wave receiver functions using data recorded by the Morocco-Munster array and detect the X-discontinuity at apparent depths of 285-350 km. In the western part of our study region we find apparent depths of similar to 310-340 km. The eastern part of the study area appears more complex: we locate two velocity jumps at apparent depths of around 285-295 km and 330-350 km in the northeast, and in the southeast we find a discontinuity at apparent depths of 340-350 km. Due to the large depth range and the twofold appearance of the X-discontinuity, we suggest that two different phase transitions cause the X-discontinuity beneath SW Morocco. The velocity contrasts at larger depths likely point to the coesite-stishovite phase transition occurring in deep eclogitic pools. The shallower depths can be explained by the transition from orthoenstatite to high-pressure clinoenstatite which requires the reaction between eclogite and peridotite to form orthopyroxene-rich peridotite. This reaction is likely related to previously proposed small-scale mantle upwellings beneath SW Morocco. Since both phase transitions require eclogite occurrence, the location of the X-discontinuity in this region can be used to indicate the location of recycled oceanic crust.}, language = {en} } @misc{ThomasSabbahRappetal.2019, author = {Thomas, Christine and Sabbah, Patricia and Rapp, Michael Armin and Eschweiler, Gerhard}, title = {The Perioperative Care of Older Patients}, series = {Deutsches {\"A}rzteblatt international : a weekly online journal of clinical medicine and public health}, volume = {116}, journal = {Deutsches {\"A}rzteblatt international : a weekly online journal of clinical medicine and public health}, number = {21}, publisher = {Dt. {\"A}rzte-Verl.}, address = {Cologne}, issn = {1866-0452}, doi = {10.3238/arztebl.2019.0373a}, pages = {373 -- 373}, year = {2019}, language = {en} } @article{SanchezThomasDeekenetal.2019, author = {S{\´a}nchez, Alba and Thomas, Christine and Deeken, Friederike and Wagner, S{\"o}ren and Kl{\"o}ppel, Stefan and Kentischer, Felix and von Arnim, Chrstine A. F. and Denkinger, Michael and Conzelmann, Lars O. and Biermann-Stallwitz, Janine and Joos, Stefanie and Sturm, Heidrun and Metz, Brigitte and Auer, Ramona and Skrobik, Yoanna and Eschweiler, Gerhard W. and Rapp, Michael Armin}, title = {Patient safety, cost-effectiveness, and quality of life}, series = {Trials}, volume = {20}, journal = {Trials}, number = {71}, publisher = {BioMed Central}, address = {London}, issn = {1468-6694}, doi = {10.1186/s13063-018-3148-8}, pages = {15}, year = {2019}, abstract = {Background Postoperative delirium is a common disorder in older adults that is associated with higher morbidity and mortality, prolonged cognitive impairment, development of dementia, higher institutionalization rates, and rising healthcare costs. The probability of delirium after surgery increases with patients' age, with pre-existing cognitive impairment, and with comorbidities, and its diagnosis and treatment is dependent on the knowledge of diagnostic criteria, risk factors, and treatment options of the medical staff. In this study, we will investigate whether a cross-sectoral and multimodal intervention for preventing delirium can reduce the prevalence of delirium and postoperative cognitive decline (POCD) in patients older than 70 years undergoing elective surgery. Additionally, we will analyze whether the intervention is cost-effective. Methods The study will be conducted at five medical centers (with two or three surgical departments each) in the southwest of Germany. The study employs a stepped-wedge design with cluster randomization of the medical centers. Measurements are performed at six consecutive points: preadmission, preoperative, and postoperative with daily delirium screening up to day 7 and POCD evaluations at 2, 6, and 12 months after surgery. Recruitment goals are to enroll 1500 patients older than 70 years undergoing elective operative procedures (cardiac, thoracic, vascular, proximal big joints and spine, genitourinary, gastrointestinal, and general elective surgery procedures. Discussion Results of the trial should form the basis of future standards for preventing delirium and POCD in surgical wards. Key aims are the improvement of patient safety and quality of life, as well as the reduction of the long-term risk of conversion to dementia. Furthermore, from an economic perspective, we expect benefits and decreased costs for hospitals, patients, and healthcare insurances. Trial registration German Clinical Trials Register, DRKS00013311. Registered on 10 November 2017.}, language = {en} } @misc{SanchezThomasDeekenetal.2019, author = {S{\´a}nchez, Alba and Thomas, Christine and Deeken, Friederike and Wagner, S{\"o}ren and Kl{\"o}ppel, Stefan and Kentischer, Felix and von Arnim, Chrstine A. F. and Denkinger, Michael and Conzelmann, Lars O. and Biermann-Stallwitz, Janine and Joos, Stefanie and Sturm, Heidrun and Metz, Brigitte and Auer, Ramona and Skrobik, Yoanna and Eschweiler, Gerhard W. and Rapp, Michael Armin}, title = {Patient safety, cost-effectiveness, and quality of life}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {535}, issn = {1866-8364}, doi = {10.25932/publishup-42488}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424883}, pages = {15}, year = {2019}, abstract = {Background Postoperative delirium is a common disorder in older adults that is associated with higher morbidity and mortality, prolonged cognitive impairment, development of dementia, higher institutionalization rates, and rising healthcare costs. The probability of delirium after surgery increases with patients' age, with pre-existing cognitive impairment, and with comorbidities, and its diagnosis and treatment is dependent on the knowledge of diagnostic criteria, risk factors, and treatment options of the medical staff. In this study, we will investigate whether a cross-sectoral and multimodal intervention for preventing delirium can reduce the prevalence of delirium and postoperative cognitive decline (POCD) in patients older than 70 years undergoing elective surgery. Additionally, we will analyze whether the intervention is cost-effective. Methods The study will be conducted at five medical centers (with two or three surgical departments each) in the southwest of Germany. The study employs a stepped-wedge design with cluster randomization of the medical centers. Measurements are performed at six consecutive points: preadmission, preoperative, and postoperative with daily delirium screening up to day 7 and POCD evaluations at 2, 6, and 12 months after surgery. Recruitment goals are to enroll 1500 patients older than 70 years undergoing elective operative procedures (cardiac, thoracic, vascular, proximal big joints and spine, genitourinary, gastrointestinal, and general elective surgery procedures. Discussion Results of the trial should form the basis of future standards for preventing delirium and POCD in surgical wards. Key aims are the improvement of patient safety and quality of life, as well as the reduction of the long-term risk of conversion to dementia. Furthermore, from an economic perspective, we expect benefits and decreased costs for hospitals, patients, and healthcare insurances. Trial registration German Clinical Trials Register, DRKS00013311. Registered on 10 November 2017.}, language = {en} } @article{GassnerThomasKruegeretal.2015, author = {Gassner, Alexandra and Thomas, Christine and Kr{\"u}ger, Frank and Weber, Michael H.}, title = {Probing the core-mantle boundary beneath Europe and Western Eurasia: A detailed study using PcP}, series = {Physics of the earth and planetary interiors}, volume = {246}, journal = {Physics of the earth and planetary interiors}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-9201}, doi = {10.1016/j.pepi.2015.06.007}, pages = {9 -- 24}, year = {2015}, abstract = {We use PcP (the core reflected P phase) recordings of deep earthquakes and nuclear explosions from the Grafenberg (Germany) and NORSAR (Norway) arrays to investigate the core-mantle boundary region beneath Europe and western Eurasia. We find evidence for a previously unknown ultra-low velocity zone 600 km south-east of Moscow, located at the edge of a middle-size low shear- velocity region imaged in seismic tomography that is located beneath the Volga river region. The observed amplitude variations of PcP can be modelled by velocity reductions of P and S-waves of -5\% and -15\%, respectively, with a density increase of +15\%. Travel time delays of pre-and postcursors are indicating a thickness of about 13 km for this ultra-low velocity region (ULVZ). However, our modelling also reveals highly ambiguous amplitude variations of PcP and a reflection off the top of the anomaly for various ULVZs and topography models. Accordingly, large velocity contrasts of up to -10\% in V-P and -20\% in Vs cannot be excluded. In general, the whole Volga river region shows a complex pattern of PcP amplitudes caused most likely by CMB undulations. Further PcP probes beneath Paris, Kiev and northern Italy indicate likely normal CMB conditions, whereas the samples below Finland and the Hungary-Slovakia border yield strongly amplified PcP signals suggesting strong CMB topography effects. We evaluate the amplitude behaviour of PcP as a function of distance and several ULVZ models using the 1D reflectivity and the 2D Gauss beam method. The influence of the velocity and density perturbations is analysed as well as the anomaly thickness, the dominant period of the source wavelet and interface topographies. Strong variation of the PcP amplitude are obtained as a function of distance and of the impedance contrast. We also consider two types of topographies: undulations atop the CMB in the presence of flat ULVZs and vice versa. Where a broad range of CMB topography dimensions lead to large PcP amplitude variations, only large ULVZ undulations generate significant amplitude scattering. Consequently, this indicates that topography effects of anomalies may mask the true medium parameters as well as the ULVZ thickness. Moreover, there might be a possibility of misinterpreting the precursor as PcP, in particular for thin ULVZs. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} }