@article{PehLiedelTaubertetal.2017, author = {Peh, Eddie and Liedel, Clemens and Taubert, Andreas and Tauer, Klaus}, title = {Composition inversion to form calcium carbonate mixtures}, series = {CrystEngComm}, volume = {19}, journal = {CrystEngComm}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c7ce00433h}, pages = {3573 -- 3583}, year = {2017}, abstract = {Composition inversion takes place in equimolar solid mixtures of sodium or ammonium carbonate and calcium chloride with respect to the combination of anions and cations leading to the corresponding chloride and calcite in complete conversion. The transformation takes place spontaneously under a variety of different situations, even in a powdery mixture resting under ambient conditions. Powder X-ray diffraction data and scanning electron microscopy micrographs are presented to describe the course of the reaction and to characterize the reaction products. The incomplete reaction in the interspace between two compressed tablets of pure starting materials leads to an electric potential due to the presence of uncompensated charges.}, language = {en} } @article{HentrichTauerEspanoletal.2017, author = {Hentrich, Doreen and Tauer, Klaus and Espanol, Montserrat and Ginebra, Maria-Pau and Taubert, Andreas}, title = {EDTA and NTA effectively tune the mineralization of calcium phosphate from bulk aqueous solution}, series = {Biomimetics}, volume = {2}, journal = {Biomimetics}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2313-7673}, doi = {10.3390/biomimetics2040024}, pages = {21}, year = {2017}, abstract = {This study describes the effects of nitrilotriacetic acid (NTA) and ethylenediaminotetraacetic acid (EDTA) on themineralization of calciumphosphate from bulk aqueous solution. Mineralization was performed between pH 6 and 9 and with NTA or EDTA concentrations of 0, 5, 10, and 15 mM. X-ray diffraction and infrared spectroscopy show that at low pH, mainly brushite precipitates and at higher pH, mostly hydroxyapatite forms. Both additives alter the morphology of the precipitates. Without additive, brushite precipitates as large plates. With NTA, the morphology changes to an unusual rod-like shape. With EDTA, the edges of the particles are rounded and disk-like particles form. Conductivity and pH measurements suggest that the final products form through several intermediate steps.}, language = {en} } @misc{HentrichTauerEspanoletal.2017, author = {Hentrich, Doreen and Tauer, Klaus and Espanol, Montserrat and Ginebra, Maria-Pau and Taubert, Andreas}, title = {EDTA and NTA effectively tune the mineralization of calcium phosphate from bulk aqueous solution}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1095}, issn = {1866-8372}, doi = {10.25932/publishup-46918}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469186}, pages = {23}, year = {2017}, abstract = {This study describes the effects of nitrilotriacetic acid (NTA) and ethylenediaminotetraacetic acid (EDTA) on themineralization of calciumphosphate from bulk aqueous solution. Mineralization was performed between pH 6 and 9 and with NTA or EDTA concentrations of 0, 5, 10, and 15 mM. X-ray diffraction and infrared spectroscopy show that at low pH, mainly brushite precipitates and at higher pH, mostly hydroxyapatite forms. Both additives alter the morphology of the precipitates. Without additive, brushite precipitates as large plates. With NTA, the morphology changes to an unusual rod-like shape. With EDTA, the edges of the particles are rounded and disk-like particles form. Conductivity and pH measurements suggest that the final products form through several intermediate steps.}, language = {en} }