@article{YuantenBrummelhuisJungingeretal.2011, author = {Yuan, Jiayin and ten Brummelhuis, Niels and Junginger, Mathias and Xie, Zailai and Lu, Yan and Taubert, Andreas and Schlaad, Helmut}, title = {Diversified applications of chemically modified 1,2-Polybutadiene}, series = {Macromolecular rapid communications}, volume = {32}, journal = {Macromolecular rapid communications}, number = {15}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1022-1336}, doi = {10.1002/marc.201100254}, pages = {1157 -- 1162}, year = {2011}, abstract = {Commercially available 1,2-PB was transformed into a well-defined reactive intermediate by quantitative bromination. The brominated polymer was used as a polyfunctional macroinitiator for the cationic ring-opening polymerization of 2-ethyl-2-oxazoline to yield a water-soluble brush polymer. Nucleophilic substitution of bromide by 1-methyl imidazole resulted in the formation of polyelectrolyte copolymers consisting of mixed units of imidazolium, bromo, and double bond. These copolymers, which were soluble in water without forming aggregates, were used as stabilizers in the heterophase polymerization of styrene and were also studied for their ionic conducting properties.}, language = {en} } @article{MarquardtXieTaubertetal.2011, author = {Marquardt, Dorothea and Xie, Zailai and Taubert, Andreas and Thomann, Ralf and Janiak, Christoph}, title = {Microwave synthesis and inherent stabilization of metal nanoparticles in 1-methyl-3-(3-carboxyethyl)-imidazolium tetrafluoroborate}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {40}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, number = {33}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c1dt10795j}, pages = {8290 -- 8293}, year = {2011}, abstract = {The synthesis of Co-NPs and Mn-NPs by microwave-induced decomposition of the metal carbonyls Co-2(CO)(8) and Mn-2(CO)(10), respectively, yields smaller and better separated particles in the functionalized IL 1-methyl-3-(3-carboxyethyl)-imidazolium tetrafluoroborate [EmimCO(2)H][BF4] (1.6 +/- 0.3 nm and 4.3 +/- 1.0 nm, respectively) than in the non-functionalized IL 1-n-butyl-3-methylimidazolium tetrafluoroborate [Bmim][BF4]. The particles are stable in the absence of capping ligands (surfactants) for more than six months although some variation in particle size could be observed by TEM.}, language = {en} } @article{DelahayeXieSchaeferetal.2011, author = {Delahaye, Emilie and Xie, Zailai and Sch{\"a}fer, Andreas and Douce, Laurent and Rogez, Guillaume and Rabu, Pierre and G{\"u}nter, Christina and Gutmann, Jochen S. and Taubert, Andreas}, title = {Intercalation synthesis of functional hybrid materials based on layered simple hydroxide hosts and ionic liquid guests - a pathway towards multifunctional ionogels without a silica matrix?}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {40}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, number = {39}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c1dt10841g}, pages = {9977 -- 9988}, year = {2011}, abstract = {Functional hybrid materials on the basis of inorganic hosts and ionic liquids (ILs) as guests hold promise for a virtually unlimited number of applications. In particular, the interaction and the combination of properties of a defined inorganic matrix and a specific IL could lead to synergistic effects in property selection and tuning. Such hybrid materials, generally termed ionogels, are thus an emerging topic in hybrid materials research. The current article addresses some of the recent developments and focuses on the question why silica is currently the dominating matrix used for (inorganic) ionogel fabrication. In comparison to silica, matrix materials such as layered simple hydroxides, layered double hydroxides, clay-type substances, magnetic or catalytically active solids, and many other compounds could be much more interesting because they themselves may carry useful functionalities, which could also be exploited for multifunctional hybrid materials synthesis. The current article combines experimental results with some arguments as to how new, advanced functional hybrid materials can be generated and which obstacles will need to be overcome to successfully achieve the synthesis of a desired target material.}, language = {en} }