@unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 3: Eta invariant and the spectral flow}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26595}, year = {2003}, abstract = {Contents: Chapter 3: Eta Invariant and the Spectral Flow 3.1. Introduction 3.2. The Classical Spectral Flow 3.2.1. Definition and main properties 3.2.2. The spectral flow formula for periodic families 3.3. The Atiyah-Patodi-Singer Eta Invariant 3.3.1. Definition of the eta invariant 3.3.2. Variation under deformations of the operator 3.3.3. Homotopy invariance. Examples 3.4. The Eta Invariant of Families with Parameter (Melrose's Theory) 3.4.1. A trace on the algebra of parameter-dependent operators 3.4.2. Definition of the Melrose eta invariant 3.4.3. Relationship with the Atiyah-Patodi-Singer eta invariant 3.4.4. Locality of the derivative of the eta invariant. Examples 3.5. The Spectral Flow of Families of Parameter-Dependent Operators 3.5.1. Meromorphic operator functions. Multiplicities of singular points 3.5.2. Definition of the spectral flow 3.6. Higher Spectral Flows 3.6.1. Spectral sections 3.6.2. Spectral flow of homotopies of families of self-adjoint operators 3.6.3. Spectral flow of homotopies of families of parameter-dependent operators 3.7. Bibliographical Remarks}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26587}, year = {2003}, abstract = {Contents: Chapter 4: Pseudodifferential Operators 4.1. Preliminary Remarks 4.1.1. Why are pseudodifferential operators needed? 4.1.2. What is a pseudodifferential operator? 4.1.3. What properties should the pseudodifferential calculus possess? 4.2. Classical Pseudodifferential Operators on Smooth Manifolds 4.2.1. Definition of pseudodifferential operators on a manifold 4.2.2. H{\"o}rmander's definition of pseudodifferential operators 4.2.3. Basic properties of pseudodifferential operators 4.3. Pseudodifferential Operators in Sections of Hilbert Bundles 4.3.1. Hilbert bundles 4.3.2. Operator-valued symbols. Specific features of the infinite-dimensional case 4.3.3. Symbols of compact fiber variation 4.3.4. Definition of pseudodifferential operators 4.3.5. The composition theorem 4.3.6. Ellipticity 4.3.7. The finiteness theorem 4.4. The Index Theorem 4.4.1. The Atiyah-Singer index theorem 4.4.2. The index theorem for pseudodifferential operators in sections of Hilbert bundles 4.4.3. Proof of the index theorem 4.5. Bibliographical Remarks}, language = {en} } @unpublished{SchulzeSterninShatalov1997, author = {Schulze, Bert-Wolfgang and Sternin, Boris and Shatalov, Victor}, title = {Operator algebras on singular manifolds. I}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25011}, year = {1997}, language = {en} } @unpublished{SchulzeSterninShatalov1997, author = {Schulze, Bert-Wolfgang and Sternin, Boris and Shatalov, Victor}, title = {On the index of differential operators on manifolds with conical singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-24965}, year = {1997}, abstract = {The paper contains the proof of the index formula for manifolds with conical points. For operators subject to an additional condition of spectral symmetry, the index is expressed as the sum of multiplicities of spectral points of the conormal symbol (indicial family) and the integral from the Atiyah-Singer form over the smooth part of the manifold. The obtained formula is illustrated by the example of the Euler operator on a two-dimensional manifold with conical singular point.}, language = {en} } @unpublished{SchulzeSterninShatalov1997, author = {Schulze, Bert-Wolfgang and Sternin, Boris and Shatalov, Victor}, title = {Nonstationary problems for equations of Borel-Fuchs type}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-24973}, year = {1997}, abstract = {In the paper, the nonstationary problems for equations of Borel-Fuchs type are investigated. The asymptotic expansion are obtained for different orders of degeneration of operators in question. The approach to nonstationary problems based on the asymptotic theory on abstract algebras is worked out.}, language = {en} } @unpublished{NazaikinskiiSchulzeSternin2000, author = {Nazaikinskii, Vladimir and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Quantization methods in differential equations : Chapter 3: Applications of noncommutative analysis to operator algebras on singular manifolds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25801}, year = {2000}, abstract = {Content: Chapter 3: Applications of Noncommutative Analysis to Operator Algebras on Singular Manifolds 3.1 Statement of the problem 3.2 Operators on the Model Cone 3.3 Operators on the Model Cusp of Order k 3.4 An Application to the Construction of Regularizers and Proof of the Finiteness Theorem}, language = {en} } @unpublished{NazaikinskiiSchulzeSternin2000, author = {Nazaikinskii, Vladimir and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Quantization methods in differential equations : Chapter 2: Exactly soluble commutation relations (The simplest class of classical mechanics)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25796}, year = {2000}, abstract = {Content: Chapter 2: Exactly SolubleCommutation Relations (The Simplest Class of Classical Mechanics) 2.1 Some examples 2.2 Lie commutation relations 2.3 Non-Lie (nonlinear) commutation relations}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2004, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 6: Elliptic theory on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26757}, year = {2004}, abstract = {Contents: Chapter 6: Elliptic Theory on Manifolds with Edges Introduction 6.1. Motivation and Main Constructions 6.1.1. Manifolds with edges 6.1.2. Edge-degenerate differential operators 6.1.3. Symbols 6.1.4. Elliptic problems 6.2. Pseudodifferential Operators 6.2.1. Edge symbols 6.2.2. Pseudodifferential operators 6.2.3. Quantization 6.3. Elliptic Morphisms and the Finiteness Theorem 6.3.1. Matrix Green operators 6.3.2. General morphisms 6.3.3. Ellipticity, Fredholm property, and smoothness Appendix A. Fiber Bundles and Direct Integrals A.1. Local theory A.2. Globalization A.3. Versions of the Definition of the Norm}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2004, author = {Nazaikinskii, Vladimir E. and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {On the homotopy classification of elliptic operators on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26769}, year = {2004}, abstract = {We obtain a stable homotopy classification of elliptic operators on manifolds with edges.}, language = {en} } @unpublished{SchulzeNazaikinskiiSternin1998, author = {Schulze, Bert-Wolfgang and Nazaikinskii, Vladimir and Sternin, Boris}, title = {The index of quantized contact transformations on manifolds with conical singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25276}, year = {1998}, abstract = {The quantization of contact transformations of the cosphere bundle over a manifold with conical singularities is described. The index of Fredholm operators given by this quantization is calculated. The answer is given in terms of the Epstein-Melrose contact degree and the conormal symbol of the corresponding operator.}, language = {en} }