@article{LehrDannowskiKalettkaetal.2018, author = {Lehr, Christian and Dannowski, Ralf and Kalettka, Thomas and Merz, Christoph and Schr{\"o}der, Boris and Steidl, J{\"o}rg and Lischeid, Gunnar}, title = {Detecting dominant changes in irregularly sampled multivariate water quality data sets}, series = {Hydrology and earth system sciences : HESS}, volume = {22}, journal = {Hydrology and earth system sciences : HESS}, number = {8}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-22-4401-2018}, pages = {4401 -- 4424}, year = {2018}, abstract = {Time series of groundwater and stream water quality often exhibit substantial temporal and spatial variability, whereas typical existing monitoring data sets, e.g. from environmental agencies, are usually characterized by relatively low sampling frequency and irregular sampling in space and/or time. This complicates the differentiation between anthropogenic influence and natural variability as well as the detection of changes in water quality which indicate changes in single drivers. We suggest the new term "dominant changes" for changes in multivariate water quality data which concern (1) multiple variables, (2) multiple sites and (3) long-term patterns and present an exploratory framework for the detection of such dominant changes in data sets with irregular sampling in space and time. Firstly, a non-linear dimension-reduction technique was used to summarize the dominant spatiotemporal dynamics in the multivariate water quality data set in a few components. Those were used to derive hypotheses on the dominant drivers influencing water quality. Secondly, different sampling sites were compared with respect to median component values. Thirdly, time series of the components at single sites were analysed for long-term patterns. We tested the approach with a joint stream water and groundwater data set quality consisting of 1572 samples, each comprising sixteen variables, sampled with a spatially and temporally irregular sampling scheme at 29 sites in northeast Germany from 1998 to 2009. The first four components were interpreted as (1) an agriculturally induced enhancement of the natural background level of solute concentration, (2) a redox sequence from reducing conditions in deep groundwater to post-oxic conditions in shallow groundwater and oxic conditions in stream water, (3) a mixing ratio of deep and shallow groundwater to the streamflow and (4) sporadic events of slurry application in the agricultural practice. Dominant changes were observed for the first two components. The changing intensity of the first component was interpreted as response to the temporal variability of the thickness of the unsaturated zone. A steady increase in the second component at most stream water sites pointed towards progressing depletion of the denitrification capacity of the deep aquifer.}, language = {en} } @article{LischeidKalettkaHollaenderetal.2018, author = {Lischeid, Gunnar and Kalettka, Thomas and Holl{\"a}nder, Matthias and Steidl, J{\"o}rg and Merz, Christoph and Dannowski, Ralf and Hohenbrink, Tobias Ludwig and Lehr, Christian and Onandia, Gabriela and Reverey, Florian and P{\"a}tzig, Marlene}, title = {Natural ponds in an agricultural landscape}, series = {Limnologica : ecology and management of inland waters}, volume = {68}, journal = {Limnologica : ecology and management of inland waters}, publisher = {Elsevier GMBH}, address = {M{\"u}nchen}, issn = {0075-9511}, doi = {10.1016/j.limno.2017.01.003}, pages = {5 -- 16}, year = {2018}, abstract = {The pleistocenic landscape in North Europe, North Asia and North America is spotted with thousands of natural ponds called kettle holes. They are biological and biogeochemical hotspots. Due to small size, small perimeter and shallow depth biological and biogeochemical processes in kettle holes are closely linked to the dynamics and the emissions of the terrestrial environment. On the other hand, their intriguing high spatial and temporal variability makes a sound understanding of the terrestrial-aquatic link very difficult. It is presumed that intensive agricultural land use during the last decades has resulted in a ubiquitous high nutrient load. However, the water quality encountered at single sites highly depends on internal biogeochemical processes and thus can differ substantially even between adjacent sites. This study aimed at elucidating the interplay between external drivers and internal processes based on a thorough analysis of a comprehensive kettle hole water quality data set. To study the role of external drivers, effects of land use in the adjacent terrestrial environment, effects of vegetation at the interface between terrestrial and aquatic systems, and that of kettle hole morphology on water quality was investigated. None of these drivers was prone to strong with-in year variability. Thus temporal variability of spatial patterns could point to the role of internal biogeochemical processes. To that end, the temporal stability of the respective spatial patterns was studied as well for various solutes. All of these analyses were performed for a set of different variables. Different results for different solutes were then used as a source of information about the respective driving processes. In the Quillow catchment in the Uckermark region, about 100 km north of Berlin, Germany, 62 kettle holes have been regularly sampled since 2013. Kettle hole catchments were determined based on a groundwater level map of the uppermost aquifer. The catchments were not clearly related to topography. Spatial patterns of kettle hole water concentration of (earth) alkaline metals and chloride were fairly stable, presumably reflecting solute concentration of the uppermost aquifer. In contrast, spatial patterns of nutrients and redox-sensitive solutes within the kettle holes were hardly correlated between different sampling campaigns. Correspondingly, effects of season, hydrogeomorphic kettle hole type, shore vegetation or land use in the respective catchments were significant but explained only a minor portion of the total variance. It is concluded that internal processes mask effects of the terrestrial environment. There is some evidence that denitrification and phosphorus release from the sediment during frequent periods of hypoxia might play a major role. The latter seems to boost primary production occasionally. These processes do not follow a clear seasonal pattern and are still not well understood.}, language = {en} } @article{NatkhinSteidlDietrichetal.2012, author = {Natkhin, Marco and Steidl, J{\"o}rg and Dietrich, Ottfried and Dannowski, Ralf and Lischeid, Gunnar}, title = {Differentiating between climate effects and forest growth dynamics effects on decreasing groundwater recharge in a lowland region in Northeast Germany}, series = {Journal of hydrology}, volume = {448}, journal = {Journal of hydrology}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2012.05.005}, pages = {245 -- 254}, year = {2012}, abstract = {Declining groundwater levels in some forested regions in Northeast Germany indicate a reduction in groundwater recharge. Various interlinked aspects, such as changes in climate conditions and changes in forest structure, have been considered as the main factors affecting the regional level of groundwater recharge. For this study, the water balance model WaSiM-ETH was used to calculate groundwater recharge in a 104 km(2) area between 1958 and 2007. Climate impact analysis was driven by observed data from neighbouring meteorological stations. Changes in forest stands were reconstructed from the current status and literature studies. The model-based analysis showed that the average groundwater recharge under forest areas decreased from 1958 to 2007, with a trend of 2.3 mm/yr(2). The most important effect was changing climatic boundary conditions, which made up 53\% of the decrease. Declining precipitation is identified as the main factor. Changes in tree age distribution caused 18\% of the decrease, and the change of ground vegetation under pines (Pinus sylvestris) accounts for 29\%. In respect of the complexity and the interconnectivity of the processes of groundwater recharge, the necessity of using process-oriented distributed models such as WaSiM-ETH is discussed. We conclude that changes in forest stands affecting groundwater recharge could play a significant role in the water balance, especially in regions with a priori low total runoff, this has up to now often remained unquantified.}, language = {en} } @article{ThomasLischeidSteidletal.2012, author = {Thomas, Bj{\"o}rn and Lischeid, Gunnar and Steidl, J{\"o}rg and Dannowski, Ralf}, title = {Regional catchment classification with respect to low flow risk in a Pleistocene landscape}, series = {Journal of hydrology}, volume = {475}, journal = {Journal of hydrology}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2012.10.020}, pages = {392 -- 402}, year = {2012}, abstract = {The classification of small catchments with respect to low flow risk is needed by water and environmental managers to plan adaptation measures for freshwater streams. In this study a new approach is presented to assess the risk of seasonal low flow in the Pleistocene landscape of the Federal State of Brandenburg in Germany. Seasonal low flow and drought in small streams is very common in this region and is predicted to increase due to climate change within the next decades. Data of 15 years (1991-2006) of daily discharge at 37 small catchments (<500 km(2)) and rainfall data from the same region were used. Principal component analyses were applied to the two data sets separately. The first five principal components of the discharge data, principal components of a precipitation data set covering the same catchments and catchment characteristics were used to explain the patterns found. The first five discharge components explained 72.9\% of the total variance in the data set. The first component reflected the general regional discharge pattern. Components 2 and 3 of the discharge data could be related to spatial patterns of precipitation. Components 4 and 5 of the discharge data reflected geohydrologic processes within the catchments. In order to identify catchments with high risk with respect to low flows, component three and five were important as they both identified catchments with faster decrease of flows during summer. These components were used to estimate low flow risk. Catchments located in the northeast of Brandenburg, especially those in the Barnim highlands north and east of Berlin, were identified to be prone to seasonal low flow. There water management measures to adapt to climate change are needed the most.}, language = {en} } @misc{GliegeThomasSteidletal.2016, author = {Gliege, Steffen and Thomas, Bj{\"o}rn Daniel and Steidl, J{\"o}rg and Hohenbrink, Tobias Ludwig and Dietrich, Ottfried}, title = {Modeling the impact of ditch water level management on stream-aquifer interactions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407613}, pages = {17}, year = {2016}, abstract = {Decreasing groundwater levels in many parts of Germany and decreasing low flows in Central Europe have created a need for adaptation measures to stabilize the water balance and to increase low flows. The objective of our study was to estimate the impact of ditch water level management on stream-aquifer interactions in small lowland catchments of the mid-latitudes. The water balance of a ditch-irrigated area and fluxes between the subsurface and the adjacent stream were modeled for three runoff recession periods using the Hydrus-2D software package. The results showed that the subsurface flow to the stream was closely related to the difference between the water level in the ditch system and the stream. Evapotranspiration during the growing season additionally reduced base flow. It was crucial to stop irrigation during a recession period to decrease water withdrawal from the stream and enhance the base flow by draining the irrigated area. Mean fluxes to the stream were between 0.04 and 0.64 ls(-1) for the first 20 days of the low-flow periods. This only slightly increased the flow in the stream, whose mean was 57 ls(-1) during the period with the lowest flows. Larger areas would be necessary to effectively increase flows in mesoscale catchments.}, language = {en} } @misc{DietrichSchweigertSteidletal.2016, author = {Dietrich, Ottfried and Schweigert, Susanne and Steidl, J{\"o}rg and Lischeid, Gunnar}, title = {Effects of data and model simplification on the results of a wetland water resource management model}, series = {Water}, journal = {Water}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407579}, pages = {19}, year = {2016}, abstract = {This paper presents the development of a wetland water balance model for use in a large river basin with many different wetlands. The basic model was primarily developed for a single wetland with a complex water management system involving large amounts of specialized input data and water management details. The aim was to simplify the model structure and to use only commonly available data as input for the model, with the least possible loss of accuracy. Results from different variants of the model and data adaptation were tested against results from a detailed model. This shows that using commonly available data and unifying and simplifying the input data is tolerable up to a certain level. The simplification of the model has greater effects on the evaluated water balance components than the data adaptation. Because this simplification was necessary for large-scale use, we suggest that, for reasons of comparability, simpler models should always be applied with uniform data bases for large regions, though these should only be moderately simplified. Further, we recommend using these simplified models only for large-scale comparisons and using more specific, detailed models for investigations on smaller scales.}, language = {en} } @article{GliegeThomasSteidletal.2016, author = {Gliege, Steffen and Thomas, Bjoern D. and Steidl, J{\"o}rg and Hohenbrink, Tobias Ludwig and Dietrich, Ottfried}, title = {Modeling the Impact of Ditch Water Level Management on Stream-Aquifer Interactions}, series = {Water}, volume = {8}, journal = {Water}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w8030102}, pages = {17}, year = {2016}, abstract = {Decreasing groundwater levels in many parts of Germany and decreasing low flows in Central Europe have created a need for adaptation measures to stabilize the water balance and to increase low flows. The objective of our study was to estimate the impact of ditch water level management on stream-aquifer interactions in small lowland catchments of the mid-latitudes. The water balance of a ditch-irrigated area and fluxes between the subsurface and the adjacent stream were modeled for three runoff recession periods using the Hydrus-2D software package. The results showed that the subsurface flow to the stream was closely related to the difference between the water level in the ditch system and the stream. Evapotranspiration during the growing season additionally reduced base flow. It was crucial to stop irrigation during a recession period to decrease water withdrawal from the stream and enhance the base flow by draining the irrigated area. Mean fluxes to the stream were between 0.04 and 0.64 ls(-1) for the first 20 days of the low-flow periods. This only slightly increased the flow in the stream, whose mean was 57 ls(-1) during the period with the lowest flows. Larger areas would be necessary to effectively increase flows in mesoscale catchments.}, language = {en} } @article{LischeidKalettkaMerzetal.2016, author = {Lischeid, Gunnar and Kalettka, Thomas and Merz, Christoph and Steidl, J{\"o}rg}, title = {Monitoring the phase space of ecosystems: Concept and examples from the Quillow catchment, Uckermark}, series = {Ecological indicators : integrating monitoring, assessment and management}, volume = {65}, journal = {Ecological indicators : integrating monitoring, assessment and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1470-160X}, doi = {10.1016/j.ecolind.2015.10.067}, pages = {55 -- 65}, year = {2016}, abstract = {Ecosystem research benefits enormously from the fact that comprehensive data sets of high quality, and covering long time periods are now increasingly more available. However, facing apparently complex interdependencies between numerous ecosystem components, there is urgent need rethinking our approaches in ecosystem research and applying new tools of data analysis. The concept presented in this paper is based on two pillars. Firstly, it postulates that ecosystems are multiple feedback systems and thus are highly constrained. Consequently, the effective dimensionality of multivariate ecosystem data sets is expected to be rather low compared to the number of observables. Secondly, it assumes that ecosystems are characterized by continuity in time and space as well as between entities which are often treated as distinct units. Implementing this concept in ecosystem research requires new tools for analysing large multivariate data sets. This study presents some of them, which were applied to a comprehensive water quality data set from a long-term monitoring program in Northeast Germany in the Uckermark region, one of the LTER-D (Long Term Ecological Research network, Germany) sites. Short-term variability of the kettle hole water samples differed substantially from that of the stream water samples, suggesting different processes generating the dynamics in these two types of water bodies. However, again, this seemed to be due to differing intensities of single processes rather than to completely different processes. We feel that research aiming at elucidating apparently complex interactions in ecosystems could make much more efficient use from now available large monitoring data sets by implementing the suggested concept and using corresponding innovative tools of system analysis. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{DietrichSchweigertSteidletal.2016, author = {Dietrich, Ottfried and Schweigert, Susanne and Steidl, J{\"o}rg and Lischeid, Gunnar}, title = {Effects of Data and Model Simplification on the Results of a Wetland Water Resource Management Model}, series = {Water}, volume = {8}, journal = {Water}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w8060252}, pages = {19}, year = {2016}, abstract = {This paper presents the development of a wetland water balance model for use in a large river basin with many different wetlands. The basic model was primarily developed for a single wetland with a complex water management system involving large amounts of specialized input data and water management details. The aim was to simplify the model structure and to use only commonly available data as input for the model, with the least possible loss of accuracy. Results from different variants of the model and data adaptation were tested against results from a detailed model. This shows that using commonly available data and unifying and simplifying the input data is tolerable up to a certain level. The simplification of the model has greater effects on the evaluated water balance components than the data adaptation. Because this simplification was necessary for large-scale use, we suggest that, for reasons of comparability, simpler models should always be applied with uniform data bases for large regions, though these should only be moderately simplified. Further, we recommend using these simplified models only for large-scale comparisons and using more specific, detailed models for investigations on smaller scales.}, language = {en} } @article{ThomasLischeidSteidletal.2015, author = {Thomas, Bj{\"o}rn and Lischeid, Gunnar and Steidl, J{\"o}rg and Dietrich, Ottfried}, title = {Long term shift of low flows predictors in small lowland catchments of Northeast Germany}, series = {Journal of hydrology}, volume = {521}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2014.12.022}, pages = {508 -- 519}, year = {2015}, abstract = {Runoff, especially during summer months, and low flows have decreased in Central and Eastern Europe during the last decades. A detailed knowledge on predictors and dependencies between meteorological forcing, catchment properties and low flow is necessary to optimize regional adaption strategies to sustain minimum runoff. The objective of this study is to identify low flow predictors for 16 small catchments in Northeast Germany and their long-term shifts between 1965 and 2006. Non-linear regression models (support vector machine regression) were calibrated to iteratively select the most powerful low flow predictors regarding annual 30-day minimum flow (AM(30)). The data set consists of standardized precipitation (SPI) and potential evapotranspiration (SpETI) indices on different time scales and lag times. The potential evapotranspiration of the previous 48 and 3 months, as well as the precipitation of the previous 3 months and last year were the most relevant predictors for AM(30). Pearson correlation (r(2)) of the final model is 0.49 and if for every year the results for all catchments are averaged r(2) increases to 0.80 because extremes are smoothing out. Evapotranspiration was the most important low flow predictor for the study period. However, distinct long-term shifts in the predictive power of variables became apparent. The potential evapotranspiration of the previous 48 months explained most of the variance, but its relevance decreased during the last decades. The importance of precipitation variables increased with time. Model performance was higher at catchments with a more damped discharge behavior. The results indicate changes in the relevant processes or flow paths generating low flows. The identified predictors, temporal patterns and patterns between catchments will support the development of low flow monitoring systems and determine those catchments where adaption measures should aim more at increasing groundwater recharge. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{SteidlLischeidEngelkeetal.2021, author = {Steidl, J{\"o}rg and Lischeid, Gunnar and Engelke, Clemens and Koch, Franka}, title = {The curse of the past}, series = {Agriculture, Ecosystems \& Environment}, volume = {326}, journal = {Agriculture, Ecosystems \& Environment}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2021.107787}, pages = {14}, year = {2021}, abstract = {One challenge for modern agricultural management schemes is the reduction of harmful effects on the envi-ronment, e.g. in terms of the emission of nutrients. Sampling the effluent of tile drains is a very efficient way to sample seepage water from larger areas directly underneath the main rooting zone. Time series of solute con-centration in tile drains can be linked to agricultural management data and thus indicate the efficacy of individual management measures. To that end, the weekly runoff and solute concentration were determined in long-term measurement campaigns at 25 outlets of artificial tile drains at 19 various arable fields in the German federal state of Mecklenburg-Vorpommern. The study sites were distributed within a 23,000 km(2) region and were deemed representative of intense arable land use. In addition, comprehensive meteorological and man-agement data were provided. To disentangle the different effects, monitoring data were subjected to a principal component analysis. Loadings on the prevailing principal components and spatial and temporal patterns of the component scores were considered indicative of different processes. Principal component scores were then related to meteorological and management data via random forest modelling. Hydrological conditions and weather were identified as primary driving forces for the nutrient discharge behaviour of the drain plots, as well as the nitrogen balance. In contrast, direct effects of recent agricultural management could hardly be identified. Instead, we found clear evidence of the long-term and indirect effects of agriculture on nearly all solutes. We conclude that tile drain effluent quality primarily reflected the soil-internal mobilisation or de-mobilisation of nutrients and related solutes rather than allowing inferences to be drawn about recent individual agricultural management measures. On the other hand, principal component analysis revealed a variety of indirect and long-term effects of fertilisation on solutes other than nitrogen or phosphorus that are still widely overlooked in nutrient turnover studies.}, language = {en} }